Chicago undergraduate mathematics bibliography (not burned)

Torrent Hash:
F965A6DBC55A2DF8BC0572D35B698D23F730A489
Number of Files:
130
Content Size:
527.41MB
Convert On:
2022-04-01
Magnet Link:
W3siaWQiOiJhZHN0X2JfTV8zMDB4NTAiLCJhZHNwb3QiOiJiX01fMzAweDUwIiwid2VpZ2h0IjoiNSIsImZjYXAiOmZhbHNlLCJzY2hlZHVsZSI6ZmFsc2UsIm1heFdpZHRoIjoiNzY4IiwibWluV2lkdGgiOmZhbHNlLCJ0aW1lem9uZSI6ZmFsc2UsImV4Y2x1ZGUiOmZhbHNlLCJkb21haW4iOmZhbHNlLCJjb2RlIjoiPHNjcmlwdCB0eXBlPVwidGV4dFwvamF2YXNjcmlwdFwiPlxyXG4gIGF0T3B0aW9ucyA9IHtcclxuICAgICdrZXknIDogJzdkMWNjMGUxYjk4MWM5NzY4ZGI3ODUxZmM1MzVhMTllJyxcclxuICAgICdmb3JtYXQnIDogJ2lmcmFtZScsXHJcbiAgICAnaGVpZ2h0JyA6IDUwLFxyXG4gICAgJ3dpZHRoJyA6IDMyMCxcclxuICAgICdwYXJhbXMnIDoge31cclxuICB9O1xyXG4gIGRvY3VtZW50LndyaXRlKCc8c2NyJyArICdpcHQgdHlwZT1cInRleHRcL2phdmFzY3JpcHRcIiBzcmM9XCJodHRwJyArIChsb2NhdGlvbi5wcm90b2NvbCA9PT0gJ2h0dHBzOicgPyAncycgOiAnJykgKyAnOlwvXC93d3cuYm5odG1sLmNvbVwvaW52b2tlLmpzXCI+PFwvc2NyJyArICdpcHQ+Jyk7XHJcbjxcL3NjcmlwdD4ifV0=
File Name
Size
Elementary/Algebra/David Cohen Precalculus With Unit Circle Trigonometry with CD-ROM and iLrnTM Tutorial 2005.pdf
14.85MB
Advanced/Harmonic analysis/Edwin_Hewitt,_Kenneth_A._Ross-Abstract_Harmonic_Analysis__Structure_and_Analysis_for_Compact_Groups._Analysis_on_Locally.djvu
11.41MB
Intermediate/Complex analysis/(Undergraduate_Texts_in_Mathematics_)Bruce_P._Palka-An_Introduction_to_Complex_Function_Theory__-Springer(1990).djvu
10.9MB
Advanced/Functional analysis/Erwin_Kreyszig-Introductory_functional_analysis_with_applications-John_Wiley_&_Sons(1978).pdf
10.42MB
Advanced/Differential equations/Lars_Hörmander-The_Analysis_of_Linear_Partial_Differential_Operators_II__Differential_Operators_with_Constant_Coefficients_(Grundlehren_der_mathema.djvu
10.32MB
Advanced/Probability/William_Feller-An_Introduction_to_Probability_Theory_and_Its_Applications,_Vol._2_._Volume_2-Wiley(1971)_2.djvu
10.21MB
Advanced/Harmonic analysis/(Lecture_Notes_in_Mathematics)Ross_Hewitt,_Edwin_Hewitt,_Kenneth_Ross-Abstract_Harmonic_Analysis._Volume_2-Springer(2002).djvu
9.6MB
Intermediate/General abstract algebra/Higher/Thomas_W._Hungerford-Algebra(1980).djvu
8.44MB
Intermediate/General abstract algebra/Moderate/David_S._Dummit,_Richard_M._Foote-Abstract_Algebra-John_Wiley_and_Sons(2004).djvu
8.38MB
Intermediate/Differential geometry/Michael_Spivak-A_Comprehensive_Introduction_To_Differential_Geometry._Vol1-Publish_Or_Perish(1999).pdf
7.94MB
Advanced/Harmonic analysis/t_Kenneth_A._Ross_Kenneth_Ross-Abstract_Harmonic_Analysis__Volume_1__Structure_of_Topological_Groups._Integration.djvu
7.94MB
Advanced/Combinatorics and discrete mathematics/Bollobas_B-Modern_Graph_Theory-Springer(2001).pdf
7.91MB
Intermediate/General abstract algebra/Higher/Saunders_Mac_Lane,_Garret_Birkhoff-Algebra-AMS(1999).djvu
7.63MB
Intermediate/Real analysis/Graduate level - measure theory, basic functional analysis/Halsey_Royden,_Patrick_Fitzpatrick-Real_Analysis(2010).pdf
7.43MB
Elementary/Calculus/Courant_R.-Differential_and_Integral_Calculus._Volume_1.djvu
7.33MB
Advanced/Functional analysis/Nelson_James_Dunford,_Jacob_T._Schwartz-Linear_operators._Part_1-John_Wiley_&_Sons_Inc(1958).djvu
7.3MB
Advanced/Functional analysis/Nelson_James_Dunford,_Jacob_T._Schwartz,_William_G._Bade,_Robert_G._Bartle-Linear_operators._Partt_2(1963).djvu
7.29MB
Elementary/Calculus/Courant_R.-Differential_and_Integral_Calculus._Volume_2(1950).djvu
7.29MB
Advanced/Commutative and homological algebra/D._Eisenbud-Commutative_Algebra,_with_a_View_Toward_Algebraic_Geometry.djvu
7.27MB
Intermediate/Real analysis/Elementary level - metric spaces, continuity, differentiation/Tom_M._Apostol-Mathematical_Analysis(1974).djvu
6.82MB
Intermediate/Real analysis/Graduate level - measure theory, basic functional analysis/Walter_Rudin-Real_and_complex_analysis-McGraw-Hill(1987).pdf
6.41MB
Elementary/Calculus/G_H._1877-1947_Hardy-A_course_of_pure_mathematics-Nabu_Press(2010).djvu
6.14MB
Intermediate/General abstract algebra/Moderate/Michael_Artin-Algebra-Prentice_Hall(1991).djvu
6.13MB
Elementary/Foundations/(Princeton_Science_Library)Rudy_Rucker-Infinity_and_the_Mind-Princeton_University_Press(2004).djvu
5.71MB
Advanced/Group theory and representations/(Graduate_texts_in_mathematics__129)William_Fulton,_Joe_Harris-GTM_129_Representation_Theory,_A_First_Course_.djvu
5.66MB
Intermediate/Complex analysis/Lars_Ahlfors-Complex_analysis-McGraw-Hill_Science_Engineering_Math(1979).djvu
5.56MB
Advanced/Differential equations/(Classics_in_Mathematics_v._3_)Lars_Hörmander-The_Analysis_of_Linear_Partial_Differential_Operators_III__Pseudo-Differential_Operators_(Classics_in_Mathematics)_(v._3)-Springer(2007).djvu
5.49MB
Intermediate/Combinatorics and discrete mathematics/Ronald_L._Graham,_Donald_E._Knuth,_Oren_Patashnik-Concrete_Mathematics-Addison-Wesley_Professional(1994).pdf
5.42MB
Advanced/Group theory and representations/Joseph_J._Rotman-An_Introduction_to_the_Theory_of_Groups,_4th_Edition-Springer(1994).djvu
5.33MB
Advanced/Combinatorics and discrete mathematics/Richard_P._Stanley,_Sergey_Fomin-Enumerative_combinatorics._Volume_2(2001).djvu
5.23MB
Intermediate/Differential equations/Witold_Hurewicz-Lectures_on_Ordinary_Differential_Equations(1975).pdf
5.22MB
Elementary/Calculus/Apostol_T.M.-Calculus._Volume_1(1967).djvu
5.21MB
Advanced/Functional analysis/(Pure_and_Applied_Mathematics)Kadison_R.V.,_Ringrose_J.R.-Fundamentals_of_the_theory_of_operator_algebras,._vol._2-AP(1986).djvu
5.13MB
Advanced/Number theory/(Cambridge_Studies_in_Advanced_Mathematics_)A._Fröhlich,_M._J._Taylor-Algebraic_Number_Theory(1992).djvu
5.08MB
Advanced/Complex analysis/(Lectures_in_Mathematics,_ETH_Zürich)R._Narasimhan-Compact_Riemann_Surfaces(1996).pdf
5.02MB
Advanced/Group theory and representations/Daniel_Gorenstein-Finite_Groups,_Second_Edition-Chelsea_Pub_Co(1980).djvu
4.99MB
Elementary/Calculus/G._H._Hardy-A_Course_of_Pure_Mathematics,_10th_edition(1993).djvu
4.99MB
Advanced/Functional analysis/Nelson_Dunford,_Jacob_T._Schwartz,_William_G._Bade,_Robert_G._Bartle-Linear_Operators,_Part_III__Spectral_Operators.djvu
4.85MB
Advanced/Functional analysis/Erwin_Kreyszig-Introductory_functional_analysis_with_applications-John_Wiley_&_Sons(1978).djvu
4.8MB
Elementary/Problem solving (pre-college)/Polya - How to solve it.pdf
4.79MB
Intermediate/General abstract algebra/Higher/Lang_S.-Algebra-Springer(2002).djvu
4.71MB
Intermediate/Number theory/Kenneth_Ireland,_Michael_Rosen-A_classical_introduction_to_modern_number_theory-Springer(1990).djvu
4.7MB
Advanced/Probability/Feller_W.-An_introduction_to_probability_theory_and_its_applications._Volume_1-Wiley(1968).djvu
4.67MB
Elementary/Calculus/Apostol_T.M.-Calculus._Volume_2(1969).djvu
4.61MB
Advanced/General abstract algebra/Nathan_Jacobson-Basic_Algebra_II__Second_Edition-Dover_Publications(2009).djvu
4.28MB
Advanced/Differential equations/Michael_E._Taylor-Partial_Differential_Equations_II__Qualitative_Studies_of_Linear_Equations_(Applied_Mathematical_Sciences)-Springer(2010).pdf
4.22MB
Intermediate/Point-set topology/James_Dugundji-Topology-McGraw-Hill_Inc.,US(1966).djvu
4.18MB
Intermediate/Foundations/Abraham_A._Fraenkel-Abstract_set_theory-North_Holland_Publ._Co.(1953).djvu
4.17MB
Intermediate/Number theory/Hardy_G.H.,_Wright_E.M.-An_Introduction_to_the_Theory_of_Numbers(1975).djvu
4.16MB
Intermediate/Point-set topology/James_Munkres-Topology__A_First_Course_-Prentice_Hall_College_Div(1974).djvu
4.05MB
Advanced/Combinatorics and discrete mathematics/Stanley_R.-Enumerative_combinatorics,._vol.1-May(2011).pdf
4.02MB
Advanced/Measure theory/(GTM_018)Paul_R._Halmos-Measure_theory-Springer(1974).djvu
3.98MB
Intermediate/Real analysis/Intermediate level - normed spaces, Lebesgue integration/Dieudonne_J.-Treatise_on_Analysis._Foundations_of_modern_analysis(1969).djvu
3.96MB
Intermediate/Point-set topology/Munkres_J.R.-Topology-PH(2000).djvu
3.91MB
Intermediate/General abstract algebra/Moderate/I._N._Herstein-Topics_in_Algebra,_Second_Edition__-Xerox_College_Publishing(1975).djvu
3.91MB
Intermediate/General abstract algebra/Higher/Nathan_Jacobson-Basic_algebra._2-W_H_Freeman_&_Co_(Sd)(1985).djvu
3.88MB
Elementary/Calculus/Michael_Spivak-Calculus-Publish_or_Perish(1994).djvu
3.87MB
Advanced/Number theory/(Graduate_Texts_in_Mathematics_58_)Neal_Koblitz-P-adic_Numbers,_p-adic_Analysis,_and_Zeta-Functions,_2nd_ed-Springer(1996).djvu
3.81MB
Advanced/Problem solving/(Classics_in_Mathematics)George_Polya,_Gabor_Szegö,_D._Aeppli,_C.E._Billigheimer-Problems_and_theorems_in_analysis_I-Springer(2004).djvu
3.78MB
Advanced/Differential equations/(Applied_Mathematical_Sciences_117_)Michael_E._Taylor-Partial_Differential_Equations_III__Nonlinear_Equations2nd e,-Springer(2010).pdf
3.72MB
Advanced/Functional analysis/(Chicago_Lectures_in_Mathematics_)Robert_J._Zimmer-Essential_Results_of_Functional_Analysis_-University_Of_Chicago_Press(1990).pdf
3.72MB
Advanced/Ring theory/(Graduate_Texts_in_Mathematics,_Vol_131___)T.Y._Lam-A_first_course_in_noncommutative_rings-Springer-Verlag(1991).djvu
3.71MB
Intermediate/Differential geometry/Manfredo_Do_Carmo-Differential_geometry_of_curves_and_surfaces-Prentice_Hall(1976).djvu
3.7MB
Intermediate/Real analysis/Graduate level - measure theory, basic functional analysis/(GTM)Serge_Lang-Real_and_functional_analysis-Springer(1993).djvu
3.65MB
Intermediate/Differential geometry/Victor_Guillemin,_Alan_Pollack-Differential_Topology(1974).djvu
3.59MB
Advanced/Harmonic analysis/Elias_M._Stein,_Guido_Weiss-Introduction_to_Fourier_Analysis_on_Euclidean_Spaces_-Princeton_Univ_Pr(1971).djvu
3.55MB
Advanced/Measure theory/(Classics_in_Mathematics)Herbert_Federer-Geometric_measure_theory-Springer(1996).djvu
3.47MB
Intermediate/Classical geometry/Robin_Hartshorne-Geometry__Euclid_and_Beyond-Springer(2000).djvu
3.45MB
Intermediate/Classical geometry/Hilbert_D.-The_foundations_of_geometry(1902).djvu
3.41MB
Intermediate/Differential geometry/Michael_Spivak-A_Comprehensive_Introduction_to_Differential_Geometry._Vol_2.djvu
3.39MB
Advanced/Differential equations/(Applied_Mathematical_Sciences_115)Michael_E._Taylor-Partial_Differential_Equations_I__Basic_Theory-Springer(2010).pdf
3.35MB
Intermediate/Real analysis/Elementary level - metric spaces, continuity, differentiation/John_M._H._Olmsted-Counterexamples_in_Analysis(2003).djvu
3.34MB
Intermediate/Classical geometry/(Wiley_Classics_Library_)H._S._M._Coxeter-Introduction_to_Geometry,_Second_Edition__-John_Wiley_&_Sons,_Inc.(1969).djvu
3.33MB
Intermediate/Real analysis/Intermediate level - normed spaces, Lebesgue integration/Edwin_Hewitt,_Karl_Stromberg-Real_and_abstract_analysis-Springer(1975).djvu
3.22MB
Intermediate/Point-set topology/Lynn_Arthur_Steen,_J._Arthur_Seebach_Jr.-Counterexamples_in_Topology,_Second_Edition__-Dover_Publications(1995).djvu
3.22MB
Intermediate/Differential geometry/Michael_Spivak-A_comprehensive_introduction_to_differential_geometry._Vol.4._-Publish_or_Perish(1999).djvu
3.15MB
Advanced/Functional analysis/(_GTM096)John_B._Conway-A_course_in_functional_analysis-Springer(1997).djvu
3.13MB
Intermediate/Point-set topology/Willard_S.-General_topology-AW(1970).djvu
3.07MB
Advanced/Number theory/Joseph_H._Silverman-The_Arithmetic_of_Elliptic_Curves,_Second_Edition_(Graduate_Texts_in_Mathematics)(2009).pdf
2.95MB
Elementary/Problem solving (pre-college)/Polya_G.-Mathematics_and_plausible_reasoning._Volume_2-Princeton(1968).djvu
2.94MB
Advanced/Functional analysis/(Pure_and_Applied_Mathematics)Kadison_R.V.,_Ringrose_J.R.-Fundamentals_of_the_theory_of_operator_algebras,._vol._1-AP(1983).djvu
2.88MB
Intermediate/Complex analysis/(GTM_159)John_B._Conway-Functions_of_One_Complex_Variable_II_(Graduate_Texts_in_Mathematics)_(Pt._2)-Springer(1995).djvu
2.88MB
Intermediate/Complex analysis/Rudin_W.-Real_and_complex_analysis-MGH(1987).djvu
2.87MB
Elementary/Algebra/Izrailʹ_Moiseevich_Gelʹfand,_Elena_Georgievna_Glagoleva,_E._E._Shnol-Functions_and_Graphs-Birkhäuser(1990).pdf
2.81MB
Advanced/General abstract algebra/(Bk._1)Nathan_Jacobson-Basic_algebra_1-W_H_Freeman_&_Co_(Sd)(1985).djvu
2.81MB
Intermediate/General abstract algebra/Higher/Nathan_Jacobson-Basic_algebra._1-W_H_Freeman_&_Co_(Sd)(1985).djvu
2.79MB
Intermediate/Point-set topology/(GTM)John_L._Kelley-General_topology-Springer(1975).djvu
2.77MB
Advanced/Ring theory/(Graduate_Texts_in_Mathematics_)Patrick_Morandi-Field_and_Galois_theory-Springer(1996).djvu
2.74MB
Advanced/Foundations/(Graduate_Texts_in_Mathematics)Saunders_Mac_Lane-Categories_for_the_working_mathematician-Springer(1998).djvu
2.72MB
Advanced/Ring theory/(Graduate_Texts_in_Mathematics_13)Frank_W._Anderson,_Kent_R._Fuller-Rings_and_Categories_of_Modules-Springer(1998).djvu
2.68MB
Advanced/Complex analysis/Hermann_Weyl-The_Concept_of_a_Riemann_Surface-www.snowballpublishing.com(2010).djvu
2.65MB
Intermediate/Real analysis/Elementary level - metric spaces, continuity, differentiation/Walter_Rudin-Principles_of_Mathematical_Analysis(1976).djvu
2.6MB
Advanced/Commutative and homological algebra/H._Matsumura-Commutative_Ring_Theory_(Cambridge_Studies_in_Advanced_Mathematics)-Cambridge_University_Press(1987).djvu
2.58MB
Advanced/Complex analysis/Gunning_R.,_Rossi_H.-Analytic_functions_of_several_complex_variables-Prentice~Hall(1965).djvu
2.57MB
Advanced/Differential equations/Lars_Hörmander-The_Analysis_of_Linear_Partial_Differential_Operators_I__Distribution_Theory_and_Fourier_Analysis_(Grundlehren_der_mathematischen_Wiss.djvu
2.53MB
Intermediate/Differential equations/Vladimir_I._Arnol'd,_Vladimir_I._Arnold,_Roger_Cooke-Ordinary_differential_equations-Springer(1992).djvu
2.53MB
Elementary/Problem solving (pre-college)/(Problem_Books_in_Mathematics)Loren_C._Larson-Problem_solving_through_problems-Springer(1983).djvu
2.51MB
Intermediate/Real analysis/Intermediate level - normed spaces, Lebesgue integration/Kolmogorov_A.N.,_Fomin_S.V.-Introductory_real_analysis-Dover(1970).djvu
2.51MB
Elementary/Problem solving (pre-college)/Polya_G.-Mathematics_and_plausible_reasoning._Volume_1-Princeton(1954).djvu
2.41MB
Advanced/Commutative and homological algebra/(Cambridge_Studies_in_Advanced_Mathematics)Charles_A._Weibel-An_introduction_to_homological_algebra-(1994).djvu
2.35MB
Advanced/Number theory/(Classics_in_Mathematics)Andre_Weil-Basic_number_theory-Springer(1995).djvu
2.32MB
Advanced/Harmonic analysis/Walter_Rudin-Fourier_analysis_on_groups-INTERSCIENCE_PUBLISHERS_INC(1962).djvu
2.32MB
Intermediate/Complex analysis/(Graduate_Texts_in_Mathematics_-_Vol_11_)John_B_Conway-Functions_of_one_complex_variable-Springer(1978).djvu
2.31MB
Intermediate/Differential geometry/Michael_Spivak-A_Comprehensive_Introduction_to_Differential_Geometry._vol_5-Publish_or_Perish(1999).pdf
2.2MB
Advanced/Group theory and representations/(GTM_9)J.E._Humphreys-Introduction_to_Lie_algebras_and_representation_theory-Springer(1973).djvu
1.98MB
Advanced/Complex analysis/(Universitext___Universitext__Tracts_in_Mathematics___)Mats_Andersson-Topics_in_complex_analysis-Springer(1997).djvu
1.97MB
Intermediate/Foundations/Herbert_Enderton,_Herbert_B._Enderton-A_Mathematical_Introduction_to_Logic-Academic_Press(2001).pdf
1.92MB
Elementary/Calculus/Michael_Spivak-Answer_Book_for_Calculus-Publish_or_Perish(1994).djvu
1.8MB
Intermediate/Differential geometry/Michael_Spivak-A_comprehensive_introduction_to_differential_geometry._Vol.3._-Publish_or_Perish(1999).djvu
1.78MB
Intermediate/Linear algebra/P.R._Halmos-Finite-dimensional_vector_spaces-Springer(1974).djvu
1.77MB
Elementary/Geometry/(Mathematical_Association_of_America_Textbooks_)H._S._M._Coxeter,_Samuel_L._Greitzer-Geometry_Revisited_-MAA(1967).djvu
1.75MB
Elementary/Algebra/Israel_M._Gelfand,_Alexander_Shen-Algebra-Birkhäuser_Boston(1993).djvu
1.67MB
Intermediate/Multivariable calculus/Michael_Spivak-Calculus_on_manifolds-Westview_Press(1995).djvu
1.59MB
Intermediate/Foundations/P._R._Halmos-Naive_set_theory-Springer(1998).djvu
1.55MB
Advanced/Group theory and representations/J.L._Alperin,_Rowen_B._Bell-Groups_and_Representations-Springer(1995).djvu
1.54MB
Advanced/Complex analysis/Jurgen_Jost-Compact_Riemann_Surfaces__An_Introduction_to_Contemporary_Mathematics,_3rd_Edition_(Universitext)(2006).pdf
1.4MB
Advanced/Commutative and homological algebra/M._F._Atiyah,_I._G._MacDonald-Introduction_to_Commutative_Algebra-Perseus_Books(1969).djvu
1.32MB
Intermediate/Foundations/H.D._Ebbinghaus,_J._Flum,_W._Thomas-Mathematical_logic-Springer-Verlag(1984).djvu
1.29MB
Intermediate/Linear algebra/(Universitext)Morton_L._Curtis,_Paul_Place-Abstract_linear_algebra-Springer(1990).djvu
1.27MB
Advanced/Ring theory/(Chicago_Lectures_in_Mathematics)Irving_Kaplansky-Fields_and_rings-Univ_of_Chicago_Pr_(Tx)(1972).djvu
1.1MB
Advanced/Harmonic analysis/Yitzhak_Katznelson-An_Introduction_to_Harmonic_Analysis,_Third_edition_(Cambridge_Mathematical_Library)(2004).pdf
1.06MB
Advanced/Commutative and homological algebra/(Lectures_in_Mathematics)Irving_Kaplansky-Commutative_rings-Univ_of_Chicago_Pr_(Tx)(1974).djvu
1.05MB
Intermediate/Number theory/Komaravolu_Chandrasekharan-Introduction_to_analytic_number_theory-Springer(1969).djvu
896.58KB
Intermediate/Foundations/Foundations_of_analysis-Chelsea_Pub._Co(1966).djvu
855.11KB
Intermediate/Multivariable calculus/Manfredo_P._Do_Carmo-Differential_forms_and_applications-Springer(2000).djvu
731.85KB
Advanced/Commutative and homological algebra/Papaioannou_A.-Solutions_to_Atiyah_and_MacDonald's_Introduction_to_Commutative_Algebra.pdf
507.7KB
Elementary/Algebra/Gelfand_I.M.,_Glagoleva_E.G.,_Kirilov_A.A.-The_method_of_coordinates-Birkhauser(1990).djvu
472.06KB
Chicago undergraduate mathematics bibliography.mht
101.21KB
Advanced/Functional analysis/still some volume nelson linear operators.txt
0B
Advanced/Problem solving/volume 2 messing.txt
0B

Latest Search:

W3siaWQiOiJhZHN0X2JfTV8zMDB4NTAiLCJhZHNwb3QiOiJiX01fMzAweDUwIiwid2VpZ2h0IjoiNSIsImZjYXAiOmZhbHNlLCJzY2hlZHVsZSI6ZmFsc2UsIm1heFdpZHRoIjoiNzY4IiwibWluV2lkdGgiOmZhbHNlLCJ0aW1lem9uZSI6ZmFsc2UsImV4Y2x1ZGUiOmZhbHNlLCJkb21haW4iOmZhbHNlLCJjb2RlIjoiPHNjcmlwdCB0eXBlPVwidGV4dFwvamF2YXNjcmlwdFwiPlxyXG4gIGF0T3B0aW9ucyA9IHtcclxuICAgICdrZXknIDogJzdkMWNjMGUxYjk4MWM5NzY4ZGI3ODUxZmM1MzVhMTllJyxcclxuICAgICdmb3JtYXQnIDogJ2lmcmFtZScsXHJcbiAgICAnaGVpZ2h0JyA6IDUwLFxyXG4gICAgJ3dpZHRoJyA6IDMyMCxcclxuICAgICdwYXJhbXMnIDoge31cclxuICB9O1xyXG4gIGRvY3VtZW50LndyaXRlKCc8c2NyJyArICdpcHQgdHlwZT1cInRleHRcL2phdmFzY3JpcHRcIiBzcmM9XCJodHRwJyArIChsb2NhdGlvbi5wcm90b2NvbCA9PT0gJ2h0dHBzOicgPyAncycgOiAnJykgKyAnOlwvXC93d3cuYm5odG1sLmNvbVwvaW52b2tlLmpzXCI+PFwvc2NyJyArICdpcHQ+Jyk7XHJcbjxcL3NjcmlwdD4ifV0=
W3siaWQiOiJhZG1hX2JfUE9QVU5ERVIiLCJhZHNwb3QiOiJiX1BPUFVOREVSIiwid2VpZ2h0IjoiNTgiLCJmY2FwIjoiMiIsInNjaGVkdWxlIjpmYWxzZSwibWF4V2lkdGgiOmZhbHNlLCJtaW5XaWR0aCI6ZmFsc2UsInRpbWV6b25lIjpmYWxzZSwiZXhjbHVkZSI6ZmFsc2UsImRvbWFpbiI6ZmFsc2UsImNvZGUiOiI8c2NyaXB0IHNyYz1cIlwvXC9kanY5OXN4b3FwdjExLmNsb3VkZnJvbnQubmV0XC8/eHN2amQ9NzQxODUzXCIgdHlwZT1cInRleHRcL2phdmFzY3JpcHRcIj48XC9zY3JpcHQ+XHJcbjxzY3JpcHQgdHlwZT1cInRleHRcL2phdmFzY3JpcHRcIj52YXIgVElEID0gNzQxODUzLCBmNVgwPXdpbmRvdztmb3IodmFyIEowIGluIGY1WDApe2lmKEowLmxlbmd0aD09PSgxMy43NEUyPD0oMHgxNywweDMxKT8oOTYuNjBFMSw2Ni4pOig0OS4sMTI5KTwoMHgxODksMHgxQjYpPygxMjcuLDkpOigxLDM3LikpJiZKMC5jaGFyQ29kZUF0KCgoMHhBQiwxLjIzRTIpPj0xNC4/KDQ4LDYpOigweDEwRiwxLjNFMykpKT09PSgweEIwPD0oNi4wRTEsNDgpPzExOjB4MjRBPD0oNC4zM0UyLDB4MkUpPygweEExLDYuMzRFMik6MTIxLjw9KDE0Mi4sNDAuMUUxKT8oMHgxOUYsMTE2KTooMTEuNTZFMiwweEQ0KSkmJkowLmNoYXJDb2RlQXQoKDEwNC4+PSgweDFENiw4RTApPyg5NCw4KTooMHgxOTMsMTAuODVFMik8PTB4NkU/KDUsNjcuKTooMHg1LDEyMy4pKSk9PT0oODAuMEUxPigzNS40RTEsMTUuMEUxKT8oMi4zM0UyLDExNCk6KDcyLjJFMSw2Mi4pPj05LjU3RTI/XCJXXCI6KDEyNywzNCkpJiZKMC5jaGFyQ29kZUF0KCgoMTMuOTUwRTIsMTEuNjNFMik8KDEwNC4sMHg5MSk/KDB4MUE4LFwiVVwiKTooMHgxNEQsMHgxQzQpPD0oMHgyNTQsOTEuKT8nVSc6KDExOC4sMTA1Lik8KDk1LiwxNDcuOEUxKT8oMTQuMUUyLDQpOig0LjM2RTIsMTIwLjMwRTEpKSk9PT0oKDExMC4sMjAuKTwxNC41NDBFMj8oMHgxMzYsMTAzKTooNC45N0UyLDYuMzEwRTIpPD0oMS4wMTEwRTMsMTM4KT83MS45RTE6KDEzNS4sMHgyRSk+PSgweDFBOCwweDI0OCk/KDB4MTlDLCdJJyk6KDB4MTQ1LDUuMDNFMikpJiZKMC5jaGFyQ29kZUF0KCgoMjUsMHg5KT4oMHgxMzYsNjUuKT8oODMuLDg2Lik6KDQ3LiwweDFFQyk8PTExLjY4RTI/KDMuMjNFMiwwKTooMC4sMHgxOEYpKSk9PT0oNjY+PSgxMTEuLDkpPygweDI1MiwxMTApOigyLjYxRTIsOC41RTEpKSlicmVha307Zm9yKHZhciBtMCBpbiBmNVgwKXtpZihtMC5sZW5ndGg9PT0oKDEyMy4sMTM1LjZFMSk8PSgweEM1LDEwNi4pP1wiKVwiOig2LjQyRTIsMHg1NCk8KDE0LiwweEM0KT8oMTAuOUUxLDYpOigxMTkuN0UxLDguNzJFMikpJiZtMC5jaGFyQ29kZUF0KCgoMHg5LDguNUUxKT49KDI3LDM5Lik/KDB4QiwzKTooNjAuLDB4MTc2KSkpPT09MTAwJiZtMC5jaGFyQ29kZUF0KDUpPT09MTE5JiZtMC5jaGFyQ29kZUF0KDEpPT09MTA1JiZtMC5jaGFyQ29kZUF0KDApPT09MTE5KWJyZWFrfTsoZnVuY3Rpb24oSil7dmFyIFI3PVwiaXBcIixTND1cImNyXCIsYzQ9XCJ2YXNcIixWOD1cIlwvXCIsaDI9XCJ4dFwiLHk4PVwicGVcIixBMD1cInJpcFwiLFc9XCJlRWxlXCIsUjQ9XCJzbGlcIixsMD1cIk9TdHJcIixwNT1cIm9JXCIsdTA9XCI6XC9cL1wiLHUzPVwib3RvXCIsVzM9XCJ0cFwiLGwzPVwiZW5cIixLNT1cIm1lXCIsQjc9XCJORVwiLGU2PVwidXRcIixiOD0oMHgyMTA8PSgxLjIyOEUzLDE4Lik/NTQuMUUxOig3MCwxMzguOEUxKT4oMHgyMEEsNjcuKT8oMTQ1LDIwMCk6KDEyOS4sOS41NkUyKSksRjY9XCJlZFwiLFU0PVwibnRcIixSOD1cImFwXCIsWDE9XCImXCIsRDI9XCI9XCIsRjE9XCJyY1wiLHM2PVwiYWRcIixDMj1cIkxvXCIsZzU9XCJnZVwiLFg2PVwidXNlclwiLHoxPVwiMVwiLFk3PVwielwiLGg4PVwiQXRcIix1MT0oMS40OTZFMz4oMTIsMHgyMjYpPygxNy4yRTEsXCJQXCIpOigweDE2NywweDFENCk+KDEzMS4yMEUxLDEuMjQxRTMpPygzMi4sNC4zRTEpOig4Nyw3MC4zRTEpPD0oMTAuMTRFMiwweDE2Qik/XCJIXCI6KDQzLDB4RDUpKSxsMT1cInJDXCIsQTY9XCJDaFwiLFMxPVwiZnJvbVwiLFE2PVwiZGVcIixwMD1cIndcIix5ND0oKDczLDB4MjUpPj0oMHgxODYsMHgxQzMpPydTJzooNTAuMUUxLDIxLjVFMSk+PSgweEYsOTIpPyg1Ljg3RTIsXCJHXCIpOjB4Q0Y+PSgxMjYsMTA5LjMwRTEpPzI6KDEwOS4sMHhCQikpLFAyPVwiQlwiLEU0PVwiRVwiLHQyPVwiZXJcIixENT1cImxpXCIsWDc9XCJhY2VcIixZND1cInJlXCIsRzg9XCJ0ZVwiLE00PVwidG9cIixKOD1cImVBXCIsRzQ9XCJoYVwiLGY2PVwiYWNcIixXNz1cInBsXCIsdjU9XCJzZVwiLEM2PVwicnNcIixUPVwiLlwiLFIxPVwibVwiLFM1PVwidGlcIixwMT1cIm5nXCIsVjQ9bnVsbCxTNj1cIlpcIixxNT1cIk1cIixuNz1cIlVcIix3Nj1cImV0XCIsWjg9XCJUXCIsSjQ9XCJEXCIscjg9XCItXCIsVDc9XCJZXCIsRjQ9KCgzNSwweDM2KT4oMHgxOEYsOS43NkUyKT8ncyc6KDgzLDI4KTwoMS4yMTFFMywxMTcuKT8oNDYuLFwiRlwiKTooMTM5LDB4MjBDKSksaDc9XCJvblwiLEUwPVwidlwiLFoxPVwiam9pXCIsYjU9XCJwXCIsSTc9XCI6XCIsbjE9XCJqXCIsdDc9XCJ5XCIsWDI9XCIgXCIseTM9XCJzdFwiLFg1PVwiTlwiLFo1PVwiT1wiLEkxPVwiSlwiLFM4PVwiU1wiLGczPVwiZ1wiLGowPVwiaW5cIixhMz1cInRyXCIsaDY9XCJjZVwiLFc2PSdcIicsUTg9XCJzXCIsWjc9KCgyLjQ0RTIsMTM1LjcwRTEpPDUzLj8weDIwMDooOTcuMkUxLDEyOSk+PSgxMjguMUUxLDB4MjIpPygzMC4sXCJ4XCIpOigweDczLDE0NC45RTEpKSxvMT1cIklcIixMMT1cImxcIixkMT1cImplXCIseDg9XCJvYlwiLEMzPTMyLGI2PTY0LFYxPVwib1wiLFMyPVwiQ1wiLE81PVwiYXJcIixsNz1cIkNvXCIsZjI9MTYsVzI9MjAsZzI9KDB4MUNFPigxLjQyOEUzLDB4RjQpPygxNDEsMTIpOig5Ni4xMEUxLDB4MUJBKSksYTI9MTAsWTg9NixzOD01LGc4PTIseDc9XCJjaFwiLHcwPVwiY2RcIixkMz1cImJcIixEMD1cIjhcIixNNj1cIjdcIixlNz0oKDB4MjNCLDB4MTNBKT49KDQuMzdFMiwxMzcuKT8oMTQ2LFwiNVwiKToxMjAuPD0oMTI4Liw3OCk/KDQuNTVFMiwweDI3KTooNTkuN0UxLDB4MTZDKSksbzc9XCI0XCIsVjI9MTUsUjM9XCJhXCIsSzQ9KDM2PD0oNjUsMy44MDBFMik/KDB4QzAsXCJoXCIpOigxNDUuLDEuMzM5RTMpPDB4MUEyPygweDIxMSwweDFCOCk6KDE3LjhFMSwzLjkyRTIpKSxzMj1cImNcIixUMz0oKDB4QkUsMjYuKTw9KDB4NUYsMHhFQik/KDExLjUzRTIsXCJmXCIpOigweDE1LDguNDhFMikpLEY4PVwiY2RlXCIsbjI9XCJhYlwiLG81PVwiM1wiLGM1PSgoNC41MjBFMiwxNi4yRTEpPj0xLjE1OEUzPzB4MTlGOigxLDEuNDk5RTMpPigweDY2LDk1Lik/KDcxLjVFMSxcIjBcIik6KDB4MTg0LDc4LikpLHA4PSg4ND49KDgxLjVFMSwweDFFOCk/J0cnOjIwLj49KDB4RUQsMHgxMkMpPzEuNDg3RTM6MHg4NT4oMS4wMkUyLDY2KT8oNTEsMyk6KDcyLiwweDkzKSksbDg9NCxaPVwiXCIsRjc9KDExNy40RTE8PSgxMy4zNUUyLDgzKT8oMS4xODRFMyxcIltdXCIpOjB4MTAxPig1Ny42RTEsMCk/KDB4MkIsMzk4ODI5MjM4NCk6KDExMS44MEUxLDkuOEUxKSksZDg9OCx0MD0oKDB4MTVFLDB4MTBFKTw9MHgyMj8xMy4zNkUyOigyNy4sMTA3Lik+PTB4MjQ3PygweDFCNSw4OC4zMEUxKTooOS4sMHgyMkUpPj0weDM3PygzMi40RTEsMjU1KTooNTQuNkUxLDk4LjEwRTEpKSxlOD1cInRcIixwNj1cIkFcIix0OD1cIkNvZFwiLGM4PVwiclwiLHk1PVwiY2hhXCIsRDg9MCxMOD0xLFEzPVwiZFwiLGoyPVwiZVwiLEI1PSgoMHgyQiwxLjE2NUUzKT49KDB4MTk5LDB4QzMpPyg0Ljk4RTIsXCJuXCIpOjIuNDBFMT4oMHgzMCwweDExMyk/KDEzOS4sJ3EnKToxNDk+KDU2LiwweEE1KT8xODooMHgyM0YsODYpKSxDND1cImlcIixKNj1cImVmXCIsWjY9XCJuZFwiLGY4PVwidVwiO2lmKChmOCtaNitKNitDNCtCNStqMitRMyk9PXR5cGVvZiBmYW5maWxuZmprZHNhYmZoamRzYmZrbGpzdm1qaGRmYil7dmFyIEQ9ZnVuY3Rpb24oYSxkKXtmb3IodmFyIGI9LUw4LGY9RDg7ZjxkLmxlbmd0aDtmKyspdmFyIGM9YVsoZFsoeTUrYzgrdDgrajIrcDYrZTgpXShmKV5iKSZ0MF0sYj1iPj4+ZDgsYj1iXmM7cmV0dXJuIGI7fSxFPWZ1bmN0aW9uKGEpe3ZhciBNMD0yNTY7Zm9yKHZhciBkPVtdLGIsZj1EODtNMD5mO2YrKyl7Yj1mO2Zvcih2YXIgYz1EODtkOD5jO2MrKyliJkw4PyhiPj4+PUw4LGJePWEpOmI+Pj49TDg7ZFtmXT1iO31yZXR1cm4gZDt9KEY3KSxHPWZ1bmN0aW9uKCl7dmFyIGs1PTM5NTE0ODE3NDUsdTc9KCgxMzAuLDE1LjNFMSk8MHg5Nz8oMTQ5LDUwNCk6MHhDRj4oMS4xMDVFMyw1Ny4pPygweDFFRCw3MTg3ODcyNTkpOjB4Mzk+KDc5LjdFMSwyLjA3RTIpPzMuNzVFMjooMHgyMDAsNy43OEUyKSksSTM9KCgxOS4sMHg4Qyk8PTB4MD9cIiZ2PVwiOigweDE0MCw5OS42MEUxKT43NT8oNzUsMzE3NDc1NjkxNyk6KDUuNTVFMiwzLjYxRTIpKSxTNz00MTQ5NDQ0MjI2LE84PTEzMDkxNTE2NDksbDY9KCgyLjMxRTIsMHgyQSk+ODY/J2YnOjM0LjgwRTE8KDEuMjQzRTMsMTkpPzQ2LjooMjkuMjBFMSwweEUxKT49MS41RTI/KDY2LDI3MzQ3Njg5MTYpOigweEJELDEzNS4pKSxmNT00MjY0MzU1NTUyLFU2PTE4NzMzMTMzNTksejM9MjI0MDA0NDQ5NyxhMD0oNTk8KDI0LDQ2Lik/NC4zRTI6KDEwLjE0RTIsNTMpPjB4MUE1PzU3Ljo5NTw9KDE0OSwxMy43ODBFMik/KDB4MjBCLDQyOTM5MTU3NzMpOigweENBLDguNjZFMikpLEgxPTIzOTk5ODA2OTAsSDg9MTcwMDQ4NTU3MSxVMz00MjM3NTMzMjQxLFkwPTI4Nzg2MTIzOTEsQjg9MTEyNjg5MTQxNSxkMD00MDk2MzM2NDUyLHU2PTMyOTk2Mjg2NDUsdDM9NTMwNzQyNTIwLEg2PTM4NzMxNTE0NjEsSzY9MzY1NDYwMjgwOSxRMj03NjAyOTE4OSxQMz0zNTcyNDQ1MzE3LHYyPTM5MzY0MzAwNzQsdzM9KCgweDE0NSwweDIyRSk+KDQ1LjZFMSwzLjIyRTIpPygweEEsNjgxMjc5MTc0KTooNzguLDEwLjIxRTIpKSx5MT0zMjAwMjM2NjU2LEQzPTQxMzk0Njk2NjQsWDg9MTI3Mjg5MzM1MyxxMT0oKDUuODRFMiwxLjIxOEUzKT4oMTQ2LDMyLjgwRTEpPygxLjI2RTIsMjc2Mzk3NTIzNik6KDI4LiwzNykpLHY4PTQyNTk2NTc3NDAsdTg9KCg5LjUxRTIsMHgyMzApPj0weDE5MD8oMTIuNDFFMiwxODM5MDMwNTYyKTooMHgxOTIsOTYpKSxlMT0yMjcyMzkyODMzLEM4PTQyOTQ1ODg3MzgsUTQ9KCg1NywxNC41OUUyKT49OC42NkUyPygxLjQ5N0UzLDIzNjgzNTk1NjIpOigweEM5LDExMS4pKSxhNT0xNzM1MzI4NDczLE82PTQyNDM1NjM1MTIscjU9Mjg1MDI4NTgyOSxqMz0xMTYzNTMxNTAxLEgyPTQxMDc2MDMzMzUsZDI9MzI3NTE2MzYwNixoNT01Njg0NDY0Mzgsdzg9Mzg4OTQyOTQ0OCxxND0zNjM0NDg4OTYxLGs0PTM4MDE2MDgzLEY1PTM1OTM0MDg2MDUsazc9MzkyMTA2OTk5NCxiND0oMTQ4LjwoMS40OThFMywweEIwKT8oODcsNjQzNzE3NzEzKTooMTEyLDUxKSksWTE9MzIyNTQ2NTY2NCxVMT00MTI5MTcwNzg2LGo0PTEyMzY1MzUzMjksbzI9Mjc5Mjk2NTAwNixyMz00MjU0NjI2MTk1LE8yPTE4MDQ2MDM2ODIsUDc9MjMwNDU2MzEzNCxHMj00Mjk0OTI1MjMzLGgxPSgoMHgxRTcsNTQuNDBFMSk8PSg4Ljk1MEUyLDY2LjlFMSk/KDB4NDgsMjMzNjU1Mjg3OSk6KDB4MjIwLDEuMDAzMEUzKSkseTY9MTc3MDAzNTQxNixtNj00MjQ5MjYxMzEzLEg3PTI4MjE3MzU5NTUsczQ9MTIwMDA4MDQyNixDNz0oKDMwLiwweDFCNCk8PTB4MjREPygyOSw0MTE4NTQ4Mzk5KTooMS41OUUyLDEyOCkpLHcyPTMyNTA0NDE5NjYsdTU9KDM3PCgxMS4sMHgxNDcpPygxMzksNjA2MTA1ODE5KTooMHgxNTAsOC45NkUyKTw9MTMxPzExLjA3RTI6KDB4MTdFLDB4MUJEKSksQTU9MzkwNTQwMjcxMCxnNj0zNjE0MDkwMzYwLGkyPTIxLGMzPSgweDFFRT49KDB4N0QsNjApPygxMTYuLDIzKTooMHg0NywweDIyOSkpLFMzPTIyLHoyPTE3LHUyPTE0LGIyPTEzLHEyPTExLFU4PTksajg9NztmdW5jdGlvbiBhKGIpe3ZhciBYPVwickF0XCIscjI9XCI5YVwiLHcxPVwiNzg5XCIsbjY9XCI2XCIsQzU9XCI0NVwiLFA1PVwiMTJcIjtmb3IodmFyIGE9WixmPUQ4O2w4PmY7ZisrKXZhciBkPWY8PHA4LGE9YSsoKGM1K1A1K281K0M1K242K3cxK24yK0Y4K1QzKVsoczIrSzQrUjMrYzgrcDYrZTgpXShiPj5kK2w4JlYyKSsoYzUrUDUrbzUrbzcrZTcrbjYrTTYrRDArcjIrZDMrdzArajIrVDMpWyh4NytSMytYKV0oYj4+ZCZWMikpO3JldHVybiBhO312YXIgZD17MDpEOCwxOkw4LDI6ZzgsMzpwOCw0Omw4LDU6czgsNjpZOCw3Omo4LDg6ZDgsOTpVOCxhOmEyLGI6cTIsYzpnMixkOmIyLGU6dTIsZjpWMixBOmEyLEI6cTIsQzpnMixEOmIyLEU6dTIsRjpWMn0sYj1bajgsZzIsejIsUzMsajgsZzIsejIsUzMsajgsZzIsejIsUzMsajgsZzIsejIsUzMsczgsVTgsdTIsVzIsczgsVTgsdTIsVzIsczgsVTgsdTIsVzIsczgsVTgsdTIsVzIsbDgscTIsZjIsYzMsbDgscTIsZjIsYzMsbDgscTIsZjIsYzMsbDgscTIsZjIsYzMsWTgsYTIsVjIsaTIsWTgsYTIsVjIsaTIsWTgsYTIsVjIsaTIsWTgsYTIsVjIsaTJdLGY9W2c2LEE1LHU1LHcyLEM3LHM0LEg3LG02LHk2LGgxLEcyLFA3LE8yLHIzLG8yLGo0LFUxLFkxLGI0LGs3LEY1LGs0LHE0LHc4LGg1LGQyLEgyLGozLHI1LE82LGE1LFE0LEM4LGUxLHU4LHY4LHExLFg4LEQzLHkxLHczLHYyLFAzLFEyLEs2LEg2LHQzLHU2LGQwLEI4LFkwLFUzLEg4LEgxLGEwLHozLFU2LGY1LGw2LE84LFM3LEkzLHU3LGs1XTtyZXR1cm4gZnVuY3Rpb24oYyl7dmFyIGk2PTQ4LFYwPTI3MTczMzg3OCxUMD0yNTYyMzgzMTAyLE04PTQwMjMyMzM0MTcsTTM9MTczMjU4NDE5MyxXNT0oKDEwMS4sMHgyMzkpPD0oMy40MEUxLDExOS4pPzB4MTdGOjB4MTcyPj0oNjAuODBFMSwxMTMuKT8oNi42MEUxLDEyOCk6KDEwMSw3MCkpLEEzPTM3LHI3PVwiZGVBdFwiLGIxPVwiZUF0XCIsTDU9MTI3LGU7YTp7Zm9yKGU9Yy5sZW5ndGg7ZS0tOylpZihMNTxjWyhzMitLNCtSMytjOCt0OCtiMSldKGUpKXtlPSFEODticmVhayBhO31lPSFMODt9aWYoZSl7dmFyIGg9ZW5jb2RlVVJJQ29tcG9uZW50KGMpO2M9W107dmFyIGc9RDg7ZT1EODtmb3IodmFyIGs9aC5sZW5ndGg7ZzxrOysrZyl7dmFyIGw9aFsoeTUrYzgrbDcrcjcpXShnKTtjW2U+Pmc4XT1BMz09bD9jW2U+Pmc4XXwoZFtoWyhzMitLNCtSMytjOCtwNitlOCldKCsrZyldPDxsOHxkW2hbKHg3K1IzK2M4K3A2K2U4KV0oKytnKV0pPDwoZSVsODw8cDgpOmNbZT4+ZzhdfGw8PChlJWw4PDxwOCk7KytlO31oPShlK2Q4Pj5ZOCkrTDg8PGw4O2c9ZT4+Zzg7Y1tnXXw9VzU8PChlJWw4PDxwOCk7Zm9yKGcrPUw4O2c8aDsrK2cpY1tnXT1EODtjW2gtZzhdPWU8PHA4O31lbHNle2U9Yy5sZW5ndGg7Zz0oZStkOD4+WTgpK0w4PDxsODtoPVtdO2ZvcihrPUQ4O2s8ZzsrK2spaFtrXT1EODtmb3Ioaz1EODtrPGU7KytrKWhbaz4+ZzhdfD1jWyhzMitLNCtPNStTMitWMStRMytqMitwNitlOCldKGspPDwoayVsODw8cDgpO2hbaz4+ZzhdfD1XNTw8KGslbDg8PHA4KTtoW2ctZzhdPWU8PHA4O2M9aDt9ZT1NMztmb3IodmFyIGc9TTgsaD1UMCxrPVYwLGw9RDgscD1jLmxlbmd0aDtsPHA7bCs9ZjIpe2Zvcih2YXIgcT1lLHQ9ZyxuPWgsdT1rLHYseSxGLHI9RDg7YjY+cjsrK3IpZjI+cj8odj11XnQmKG5edSkseT1yKTpDMz5yPyh2PW5edSYodF5uKSx5PShzOCpyK0w4KSVmMik6aTY+cj8odj10Xm5edSx5PShwOCpyK3M4KSVmMik6KHY9bl4odHx+dSkseT1qOCpyJWYyKSxGPXUsdT1uLG49dCxxPXErditmW3JdK2NbbCt5XSx2PWJbcl0sdCs9cTw8dnxxPj4+QzMtdixxPUY7ZT1lK3F8RDg7Zz1nK3R8RDg7aD1oK258RDg7az1rK3V8RDg7fXJldHVybiBhKGUpK2EoZykrYShoKSthKGspO307fSgpOyh4OCtkMStzMitlOCkhPT10eXBlb2YgSlNPTiYmKEpTT049e30pOyhmdW5jdGlvbigpe3ZhciBRNT1cImlmXCIsdjY9XCJcXFxcXFxcXFwiLEkyPSdcXFxcXCInLEE4PVwic3RyaVwiLGQ3PVwiaW9cIix6Nj1cImZ1XCIsZDU9XCJlY1wiLHE4PVwidW5jXCIsQjI9XCJdXCIsYTE9XCJudVwiLFA4PVwiXFxcXFwiO2Z1bmN0aW9uIGEoYSl7cmV0dXJuIGEyPmE/YzUrYTphO31mdW5jdGlvbiBiKGEpe3ZhciBqNj1cImVwbGFcIixHMT1cImFzdFwiO2tbKEwxK0cxK28xK1o2K2oyK1o3KV09RDg7cmV0dXJuIGtbKGU4K2oyK1E4K2U4KV0oYSk/VzYrYVsoYzgrajYraDYpXShrLGZ1bmN0aW9uKGEpe3ZhciBiPXRbYV07cmV0dXJuIChROCthMytqMCtnMyk9PT10eXBlb2YgYj9iOihQOCtmOCkrKChjNStjNStjNStjNSkrYVsoeDcrTzUrbDcrUTMrajIrcDYrZTgpXShEOClbKGU4K1YxK1M4K2U4K2M4K0M0K0I1K2czKV0oZjIpKVsoUTgrTDErQzQrczIrajIpXSgtbDgpO30pK1c2Olc2K2ErVzY7fWZ1bmN0aW9uIGYoYSxjKXt2YXIgcjY9XCJ7fVwiLHE3PVwie1wiLEk2PSgoMHgyMTcsNi4yMkUyKTwweDVEPygweDFCNCwxMSk6KDB4MTlFLDUuMTBFMSk+MzcuPyg3LjdFMixcIn1cIik6KDY1Liw4NS40RTEpKSxaMz1cImpvXCIscDI9XCJ7XFxuXCIsVDY9XCI6IFwiLG8zPVwicHVzXCIsbjg9XCJbXVwiLG04PVwiLFwiLEEyPVwiXFxuXCIsbjQ9XCIsXFxuXCIsdDU9XCJbXFxuXCIsTTE9XCJsbFwiLFo0PVwicnJhXCIsQjQ9XCJiamVcIixzNz1cIltcIixtMj1cImJqXCIsTzM9XCJib1wiLFUwPVwibnVtYlwiLEs3PVwiY2FcIixQNj1cInRpb1wiLHg2PVwiU09OXCIsRzU9XCJvSlwiLGQsZyxlLGgsaz1wLGwsbT1jW2FdO20mJihWMStkMytkMStzMitlOCk9PT10eXBlb2YgbSYmKFQzK2Y4K0I1K3MyK2U4K0M0K1YxK0I1KT09PXR5cGVvZiBtWyhlOCtWMStJMStTOCtaNStYNSldJiYobT1tWyhlOCtHNSt4NildKGEpKTsoVDMrZjgrQjUrczIrUDYrQjUpPT09dHlwZW9mIG4mJihtPW5bKEs3K0wxK0wxKV0oYyxhLG0pKTtzd2l0Y2godHlwZW9mIG0pe2Nhc2UgKHkzK2M4K0M0K0I1K2czKTpyZXR1cm4gYihtKTtjYXNlIChVMCtqMitjOCk6cmV0dXJuIGlzRmluaXRlKG0pP1N0cmluZyhtKTooYTErTDErTDEpO2Nhc2UgKE8zK1YxK0wxK2oyK1IzK0I1KTpjYXNlIChCNStmOCtMMStMMSk6cmV0dXJuIFN0cmluZyhtKTtjYXNlIChWMSttMitqMitzMitlOCk6aWYoIW0pcmV0dXJuIChCNStmOCtMMStMMSk7cCs9cTtsPVtdO2lmKChzNytWMStCNCtzMitlOCtYMitwNitaNCt0NytCMik9PT1PYmplY3QucHJvdG90eXBlLnRvU3RyaW5nLmFwcGx5KG0pKXtoPW0ubGVuZ3RoO2ZvcihkPUQ4O2Q8aDtkKz1MOClsW2RdPWYoZCxtKXx8KEI1K2Y4K00xKTtlPWwubGVuZ3RoP3A/KHQ1KStwK2xbKG4xK1YxK2owKV0oKG40KStwKSsoQTIpK2srQjI6czcrbFsobjErVjErQzQrQjUpXShtOCkrQjI6KG44KTtwPWs7cmV0dXJuIGU7fWlmKG4mJihWMStCNCtzMitlOCk9PT10eXBlb2Ygbilmb3IoaD1uLmxlbmd0aCxkPUQ4O2Q8aDtkKz1MOCkoUTgrZTgrYzgrQzQrQjUrZzMpPT09dHlwZW9mIG5bZF0mJihnPW5bZF0sKGU9ZihnLG0pKSYmbFsobzMrSzQpXShiKGcpKyhwPyhUNik6STcpK2UpKTtlbHNlIGZvcihnIGluIG0pT2JqZWN0LnByb3RvdHlwZS5oYXNPd25Qcm9wZXJ0eS5jYWxsKG0sZykmJihlPWYoZyxtKSkmJmxbKGI1K2Y4K1E4K0s0KV0oYihnKSsocD8oVDYpOkk3KStlKTtlPWwubGVuZ3RoP3A/KHAyKStwK2xbKFozK0M0K0I1KV0oKG40KStwKSsoQTIpK2srSTY6cTcrbFsoWjErQjUpXShtOCkrSTY6KHI2KTtwPWs7cmV0dXJuIGU7fX1mdW5jdGlvbiBkKCl7dmFyIFkzPVwibHVlXCI7cmV0dXJuIHRoaXNbKEUwK1IzK1kzK1o1K1QzKV0oKTt9dmFyIGM9XC9eW1xcXSw6e31cXHNdKiRcLyxlPVwvXFxcXCg/OltcIlxcXFxcXFwvYmZucnRdfHVbMC05YS1mQS1GXXs0fSlcL2csaD1cL1wiW15cIlxcXFxcXG5cXHJdKlwifHRydWV8ZmFsc2V8bnVsbHwtP1xcZCsoPzpcXC5cXGQqKT8oPzpbZUVdWytcXC1dP1xcZCspP1wvZyxnPVwvKD86Xnw6fCwpKD86XFxzKlxcWykrXC9nLGs9XC9bXFxcXFxcXCJcXHUwMDAwLVxcdTAwMWZcXHUwMDdmLVxcdTAwOWZcXHUwMGFkXFx1MDYwMC1cXHUwNjA0XFx1MDcwZlxcdTE3YjRcXHUxN2I1XFx1MjAwYy1cXHUyMDBmXFx1MjAyOC1cXHUyMDJmXFx1MjA2MC1cXHUyMDZmXFx1ZmVmZlxcdWZmZjAtXFx1ZmZmZl1cL2csbD1cL1tcXHUwMDAwXFx1MDBhZFxcdTA2MDAtXFx1MDYwNFxcdTA3MGZcXHUxN2I0XFx1MTdiNVxcdTIwMGMtXFx1MjAwZlxcdTIwMjgtXFx1MjAyZlxcdTIwNjAtXFx1MjA2ZlxcdWZlZmZcXHVmZmYwLVxcdWZmZmZdXC9nOyhUMytxOCtlOCtDNCtoNykhPT10eXBlb2YgRGF0ZS5wcm90b3R5cGUudG9KU09OJiYoRGF0ZS5wcm90b3R5cGUudG9KU09OPWZ1bmN0aW9uKCl7dmFyIHc0PVwiZHNcIixjMT1cInVyXCIsSjI9XCJDSFwiLHEwPVwiVENcIixBMT1cImV0VVwiLE4xPVwiTW9cIixpND1cImdldFwiLGYxPVwiZWFcIixhND1cIlVUXCIsTDY9XCJsdVwiO3JldHVybiBpc0Zpbml0ZSh0aGlzWyhFMCtSMytMNitqMitaNStUMyldKCkpP3RoaXNbKGczK2oyK2U4K2E0K1MyK0Y0K2Y4K0wxK0wxK1Q3K2YxK2M4KV0oKStyOCthKHRoaXNbKGk0K2E0K1MyK04xK0I1K2U4K0s0KV0oKStMOCkrcjgrYSh0aGlzWyhnMytBMStxMCtKNCtSMytlOCtqMildKCkpK1o4K2EodGhpc1soZzMrdzYrbjcrWjgrSjIrVjErYzErUTgpXSgpKStJNythKHRoaXNbKGczK2oyK2U4K2E0K1MyK3E1K2owK2Y4K2U4K2oyK1E4KV0oKSkrSTcrYSh0aGlzWyhnMyt3NithNCtTMitTOCtkNStWMStCNSt3NCldKCkpK1M2OlY0O30sQm9vbGVhbi5wcm90b3R5cGUudG9KU09OPWQsTnVtYmVyLnByb3RvdHlwZS50b0pTT049ZCxTdHJpbmcucHJvdG90eXBlLnRvSlNPTj1kKTt2YXIgcCxxLHQsbjsoejYrQjUrczIrZTgrZDcrQjUpIT09dHlwZW9mIEpTT05bKEE4K0I1K2czK0M0K1QzK3Q3KV0mJih0PXtcIlxcYlwiOihQOCtkMyksXCJcXHRcIjooUDgrZTgpLFwiXFxuXCI6KFA4K0I1KSxcIlxcZlwiOihQOCtUMyksXCJcXHJcIjooUDgrYzgpLCdcIic6KEkyKSxcIlxcXFxcIjoodjYpfSxKU09OWyhROCtlOCtjOCtDNCtwMStRNSt0NyldPWZ1bmN0aW9uKGEsYixkKXt2YXIgcDc9XCJpbmdpZlwiLHI0PVwiSlNPXCIsRTg9XCJiamVjXCIsSDQ9XCJmdW5cIixOND1cInVtYmVyXCIsYztxPXA9WjtpZigoQjUrTjQpPT09dHlwZW9mIGQpZm9yKGM9RDg7YzxkO2MrPUw4KXErPVgyO2Vsc2UoeTMrYzgrajArZzMpPT09dHlwZW9mIGQmJihxPWQpO2lmKChuPWIpJiYoSDQrczIrUzUraDcpIT09dHlwZW9mIGImJigoVjErRTgrZTgpIT09dHlwZW9mIGJ8fChhMStSMStkMytqMitjOCkhPT10eXBlb2YgYi5sZW5ndGgpKXRocm93IEVycm9yKChyNCtYNStUK1E4K2U4K2M4K3A3K3Q3KSk7cmV0dXJuIGYoWix7XCJcIjphfSk7fSk7KFQzK3E4K2U4K0M0K1YxK0I1KSE9PXR5cGVvZiBKU09OWyhiNStSMytDNitqMildJiYoSlNPTlsoYjUrUjMrYzgrdjUpXT1mdW5jdGlvbihhLGIpe3ZhciBrNj1cIlNPXCIsVjY9XCJpb25cIixWNz1cIm5jXCIsTDM9XCIpXCIsZTM9XCIoXCIsUTE9XCJsYWNlXCIsZDY9KCgweDkzLDB4REEpPjB4RkM/XCI7XCI6MTMxLjlFMT4oNi4wOEUyLDEzMS4pPygweDE1RSxcIkBcIik6KDB4RDksMTI3Lik8MS4wNUUyP1widFwiOigweDE1QywxMzkuOUUxKSksSjc9XCJsYVwiLEw0PVwiZXhcIjtmdW5jdGlvbiBkKGEsZil7dmFyIEoxPVwiY2FsXCIsYyxnLGU9YVtmXTtpZihlJiYoVjErZDMrbjErZDUrZTgpPT09dHlwZW9mIGUpZm9yKGMgaW4gZSlPYmplY3QucHJvdG90eXBlLmhhc093blByb3BlcnR5LmNhbGwoZSxjKSYmKGc9ZChlLGMpLHZvaWQgRDghPT1nP2VbY109ZzpkZWxldGUgIGVbY10pO3JldHVybiBiWyhKMStMMSldKGEsZixlKTt9dmFyIGY7YT1TdHJpbmcoYSk7bFsoTDErUjMrUTgrZTgrbzErWjYrTDQpXT1EODtsWyhlOCtqMit5MyldKGEpJiYoYT1hWyhjOCtqMitXNytmNitqMildKGwsZnVuY3Rpb24oYSl7cmV0dXJuIChQOCtmOCkrKChjNStjNStjNStjNSkrYVsoczIrRzQrYzgrbDcrUTMrSjgrZTgpXShEOClbKE00K1M4K2U4K2M4K2owK2czKV0oZjIpKVsoUTgrTDErQzQrczIrajIpXSgtbDgpO30pKTtpZihjWyhHOCtROCtlOCldKGFbKGM4K2oyK2I1K0o3K2g2KV0oZSxkNilbKFk0K2I1K0wxK1g3KV0oaCxCMilbKFk0K2I1K1ExKV0oZyxaKSkpcmV0dXJuIGY9ZXZhbChlMythK0wzKSwoVDMrZjgrVjcrZTgrVjYpPT09dHlwZW9mIGI/ZCh7XCJcIjpmfSxaKTpmO3Rocm93ICBuZXcgU3ludGF4RXJyb3IoKEkxK2s2K1g1K1QrYjUrTzUrUTgrajIpKTt9KTt9KSgpOyhmdW5jdGlvbigpe3ZhciBFMT1cIitcLz1cIixRNz0oMHhDMT4oMzAsMTQ0KT8oODcuNEUxLFwiOVwiKTooMHhBLDQuMDFFMik8PSgweDE0NCwxMDUpPyg2OC4xMEUxLDB4MUNBKTo3ND49KDkuNTNFMiwxMjApPzB4MTM1OigxMDguLDB4MTQ3KSksQjE9XCJiY2RcIixONz1cIlphXCIsVzg9XCJSXCIsYTg9XCJQUVwiLHgyPVwib3JcIixpMz1cInJhXCIsSjU9XCJhdFwiOyhSMytNNCtkMykgaW4gd2luZG93JiYoZDMrZTgrVjErUjMpIGluIHdpbmRvd3x8KGY1WDBbbTBdWyhKNSt4OCldPWZ1bmN0aW9uKGEpe3ZhciBvND1cInNoXCIsWTI9XCJwdVwiLGUyPTE4LEg1PVwib2RcIixDMT1cImhhckNcIixLOD1cIm1DXCIsTzE9XCJvZGVcIixrMD1cIm9tXCIsbDI9XCJmclwiLHowPVwib21DXCIsTzQ9XCJ1c2hcIixnND1cIm1DaGFcIix0MT1cImZyb1wiLGgzPTI0LHo0PVwiZGV4XCIsazE9XCI0NTY3XCIsdjc9XCJ6MDEyM1wiLEczPVwieHlcIixKMz1cInR1dlwiLEQxPVwicHFyXCIseDU9XCJtbm9cIixvOD1cImhpamtsXCIsUjY9XCJmZ1wiLHEzPVwiVldYXCIsWDM9XCJNTk9cIixQND1cIkhJSktMXCIsdjE9XCJlckVcIixMNz1cImFyYVwiLFcwPVwiaWRDXCIscDQ9XCJJblwiLEE3PVwiSW52XCIsazI9XCJlcFwiO2E9U3RyaW5nKGEpO3ZhciBkPUQ4LGI9W10sZj1EOCxjPUQ4LGU7YT1hWyhZNCtXNytSMytzMitqMildKFwvXFxzXC9nLFopO2EubGVuZ3RoJWw4fHwoYT1hWyhjOCtrMitMMStmNitqMildKFwvPSskXC8sWikpO2lmKEw4PT09YS5sZW5ndGglbDgpdGhyb3cgRXJyb3IoKEE3K1IzK0Q1K1EzK1MyK0s0K1IzK2kzK3MyK2U4K3QyK0U0K2M4K2M4K1YxK2M4KSk7aWYoXC9bXitcLzAtOUEtWmEtel1cL1soZTgrajIreTMpXShhKSl0aHJvdyBFcnJvcigocDQrRTArUjMrTDErVzArSzQrTDcrczIrZTgrdjErYzgrYzgreDIpKTtmb3IoO2Q8YS5sZW5ndGg7KWU9KHA2K1AyK1MyK0o0K0U0K0Y0K3k0K1A0K1gzK2E4K1c4K1M4K1o4K243K3EzK1Q3K043K0IxK2oyK1I2K284K3g1K0QxK1E4K0ozK3AwK0czK3Y3K2sxK0QwK1E3K0UxKVsoQzQrQjUrejQrWjUrVDMpXShhWyh4NytSMytjOCtwNitlOCldKGQpKSxmPWY8PFk4fGUsYys9WTgsaDM9PT1jJiYoYlsoYjUrZjgrUTgrSzQpXShTdHJpbmdbKHQxK2c0K2M4K1MyK1YxK1E2KV0oZj4+ZjImdDApKSxiWyhiNStPNCldKFN0cmluZ1soVDMrYzgrejArRzQrYzgrbDcrUTMrajIpXShmPj5kOCZ0MCkpLGJbKGI1K080KV0oU3RyaW5nWyhsMitrMCtTMitLNCtSMytjOCtTMitPMSldKGYmdDApKSxmPWM9RDgpLGQrPUw4O2cyPT09Yz9iWyhiNStmOCtROCtLNCldKFN0cmluZ1soVDMrYzgrVjErSzgrQzErSDUrajIpXShmPj5sOCZ0MCkpOmUyPT09YyYmKGY+Pj1nOCxiWyhZMitvNCldKFN0cmluZ1soUzErQTYrTzUrbDcrUTMrajIpXShmPj5kOCZ0MCkpLGJbKFkyK1E4K0s0KV0oU3RyaW5nWyhsMitWMStSMStBNitSMytjOCt0OCtqMildKGYmdDApKSk7cmV0dXJuIGJbKG4xK1YxK0M0K0I1KV0oWik7fSxmNVgwW20wXVsoZDMrZTgrVjErUjMpXT1mdW5jdGlvbihhKXt2YXIgczA9XCI2N1wiLFQ1PVwiMjNcIixLMT1cIlVWV1wiLHAzPVwiR0hJXCIsZTU9XCI4OVwiLEU1PVwiMzRcIixBND1cIjAxXCIsVzE9XCJsbVwiLHM1PVwiaGlcIixrMz1cIlJTXCIsVDg9XCJRXCIsSTU9XCJPUFwiLE03PVwiR0hcIixONT1cIjc4XCIsRTc9XCI1NlwiLHo1PVwiMlwiLGkwPVwiejAxXCIsTTI9XCJ2d1wiLG01PVwiaWprbG1cIixtND1cIlRVXCIsRTY9XCJPUFFcIixjMj1cIkpLTFwiLEQ3PVwiSElcIixLMj1cIkRFXCIsTjM9XCJBQlwiLG0zPVwiNDU2Nzg5XCIsTDA9XCIxMjNcIixSMj1cInd4eXpcIixvNj1cInV2XCIsVTU9XCJxXCIseDM9XCJub1wiLHU0PVwia1wiLFI1PVwiZ2hcIixiMz1cIllaXCIsZjA9XCJYXCIsRjI9XCJWV1wiLFc0PVwiU1RcIixrOD1cIlFSXCIsRDQ9XCJMXCIsUDE9XCJLXCIsejc9XCJJSlwiLEwyPVwiRkdIXCIsSDM9XCJCQ1wiLHE2PSgweDk8KDB4MjM0LDB4MUEwKT8oMTE2LDYzKTooMHgxNUEsMHhDOCk+PSgweEFDLDkuMzNFMik/KDExNixudWxsKTooMHgxMUYsMTA3LikpLFg0PVwickNvXCIsZjM9XCJFclwiO2E9U3RyaW5nKGEpO3ZhciBkPUQ4LGI9W10sZixjLGUsaDtpZihcL1teXFx4MDAtXFx4RkZdXC9bKGU4K2oyK1E4K2U4KV0oYSkpdGhyb3cgRXJyb3IoKG8xK0I1K0UwK1IzK0wxK0M0K1EzK1MyK0s0K1IzK2kzK3MyK2U4K2oyK2M4K2YzK2M4K3gyKSk7Zm9yKDtkPGEubGVuZ3RoOylmPWFbKHMyK0s0K1IzK2M4K1MyK1YxK1E2K3A2K2U4KV0oZCsrKSxjPWFbKHMyK0c0K2wxK1YxK1EzK0o4K2U4KV0oZCsrKSxlPWFbKHg3K1IzK1g0K1EzK0o4K2U4KV0oZCsrKSxoPWY+Pmc4LGY9KGYmcDgpPDxsOHxjPj5sOCxjPShjJlYyKTw8Zzh8ZT4+WTgsZSY9cTYsZD09PWEubGVuZ3RoK2c4P2U9Yz1iNjpkPT09YS5sZW5ndGgrTDgmJihlPWI2KSxiWyhiNStmOCtROCtLNCldKChwNitIMytKNCtFNCtMMit6NytQMStENCtxNStYNStaNSt1MStrOCtXNCtuNytGMitmMCtiMytSMytCMStKNitSNStDNCtuMSt1NCtMMStSMSt4MytiNStVNStjOCtROCtlOCtvNitSMitjNStMMCttMytFMSlbKHg3K1IzK2M4K2g4KV0oaCksKE4zK1MyK0syK0Y0K3k0K0Q3K2MyK3E1K1g1K0U2K1c4K1M4K200K0YyK2YwK1Q3K1M2K24yK0Y4K1QzK2czK0s0K201K0I1K1YxK2I1K1U1K2M4K3kzK2Y4K00yK1o3K3Q3K2kwK3o1K281K283K0U3K041K1E3K0UxKVsoeDcrUjMrYzgrcDYrZTgpXShmKSwoTjMrUzIrSjQrRTQrRjQrTTcrbzErSTErUDErRDQrcTUrWDUrSTUrVDgrazMrbTQrRjIrZjArYjMrUjMrZDMrdzArajIrVDMrZzMrczUrbjErdTQrVzErQjUrVjErYjUrVTUrQzYrZTgrbzYrcDArWjcrdDcrWTcrQTQrejUrRTUrRTcrTTYrZTUrRTEpWyhzMitLNCtSMytjOCtwNitlOCldKGMpLChwNitQMitTMitKNCtFNCtGNCtwMytJMStQMStENCtxNStYNStaNSthOCtXOCtXNCtLMStmMCtUNytONytkMytzMitRNitUMytnMytLNCtDNCtuMSt1NCtMMStSMSt4MytiNStVNStjOCt5MytmOCtFMCtwMCtaNyt0NytZNytjNSt6MStUNStvNytlNytzMCtlNStFMSlbKHg3K081K3A2K2U4KV0oZSkpO3JldHVybiBiWyhaMStCNSldKFopO30pO30pKCk7QXJyYXkucHJvdG90eXBlLmluZGV4T2Z8fChBcnJheS5wcm90b3R5cGUuaW5kZXhPZj1mdW5jdGlvbihhLGQpe3ZhciBUND1cImF4XCIsRTM9J2UnLFY9J2VmaScsRTI9J2QnLHQ2PSdyJyxPNz0nbycsajc9J2wnLEcwPSd1JyxCNj0nbicsRjM9JyAnLFY1PSdcIiAnLE42PSgoODQuOUUxLDExLjlFMik8MHgxRkM/J2snOigxMTgsMTI2LjYwRTEpPigxMDEuLDEyMyk/KDEuNjUwRTIsJ3MnKTooMjYuNzBFMSwyNi4pKSxHNz0naScsbzA9KCgxMDIsODMuKTwweDEwOD8oMTcuN0UxLCdoJyk6KDB4RjgsMHgxQzEpPCg4My42MEUxLDE0Ny4pPzE0MDooMTIsMi44MUUyKT49NTIuNDBFMT8oNS41RTIsJ0onKTooMHgxODcsMHgxNEIpKSxiMD0ndCcsYjtpZighdGhpcyl0aHJvdyAgbmV3IFR5cGVFcnJvcigoVzYrYjArbzArRzcrTjYrVjUrRzcrTjYrRjMrQjYrRzArajcrajcrRjMrTzcrdDYrRjMrQjYrTzcrYjArRjMrRTIrVitCNitFMytFMikpO3ZhciBmPU9iamVjdCh0aGlzKSxjPWYubGVuZ3RoPj4+RDg7aWYoIWMpcmV0dXJuIC1MODtiPStkfHxEODtJbmZpbml0eT09PU1hdGhbKFIzK2QzK1E4KV0oYikmJihiPUQ4KTtpZihiPj1jKXJldHVybiAtTDg7Zm9yKGI9TWF0aFsoUjErVDQpXShEODw9Yj9iOmMtTWF0aFsoUjMrZDMrUTgpXShiKSxEOCk7YjxjOyl7aWYoYiBpbiBmJiZmW2JdPT09YSlyZXR1cm4gYjtiKys7fXJldHVybiAtTDg7fSk7U3RyaW5nLnByb3RvdHlwZS50cmltfHwoU3RyaW5nLnByb3RvdHlwZS50cmltPWZ1bmN0aW9uKCl7dmFyIEszPVwiZXBsXCI7cmV0dXJuIHRoaXNbKGM4K0szK1g3KV0oXC9eW1xcc1xcdUZFRkZcXHhBMF0rfFtcXHNcXHVGRUZGXFx4QTBdKyRcL2csWik7fSk7dmFyIHo9ZjVYMFtKMF1bKFg2K3A2K2c1K0I1K2U4KV1bKE00K0MyK3AwK2oyK2M4K1MyK1IzK1E4K2oyKV0oKSxBPXt9LEs9ZnVuY3Rpb24oYSl7dmFyIGc3PVwiZmlcIixJND1cInVuXCI7KEk0K1EzK2oyK2c3K0I1K2oyK1EzKT09dHlwZW9mIEFbZzJdJiYoQVtnMl09YSgpKTtyZXR1cm4gQVtnMl07fSx3PW5ldyBmdW5jdGlvbigpe3RoaXNbSzRdPWZ1bmN0aW9uKCl7dmFyIGw1PVwidGVzXCI7cmV0dXJuIFwvbXNpZXx0cmlkZW50XFxcL1wvWyhsNStlOCldKHopJiYhXC9vcGVyYVwvWyhlOCtqMitROCtlOCldKHopO307dGhpc1tnM109ZnVuY3Rpb24oKXtyZXR1cm4gSyhmdW5jdGlvbigpe3ZhciB5Mj1cInRjaFwiLEc2PVwibWFcIixhO2E9W1wvdHJpZGVudFxcXC8oPzpbMS05XVswLTldK1xcLlswLTldK1s3ODldXFwuWzAtOV0rfCkuKnJ2OihbMC05XStcXC5bMC05YS16XSspXC8sXC9tc2llXFxzKFswLTldK1xcLlswLTlhLXpdKylcL107Zm9yKHZhciBkPUQ4LGI9YS5sZW5ndGg7ZDxiO2QrKyl7dmFyIGY9elsoRzYreTIpXShhW2RdKTtpZihmJiZmW0w4XSlyZXR1cm4gcGFyc2VGbG9hdChmW0w4XSk7fXJldHVybiBEODt9KTt9O3RoaXNbTDFdPWZ1bmN0aW9uKCl7cmV0dXJuIFwvaWVtb2JpbGVcL1soZTgrajIreTMpXSh6KTt9O307d1tLNF0oKSYmd1tnM10oKTt2YXIgTD1bbDgsTDhdLE09W1cyLEw4XSx4PXtpOlY0LHNlbmQ6ZnVuY3Rpb24oYSxkLGIsZil7dmFyIG0xPVwidFRpXCIsWTY9XCJfXCIsbjU9XCJuZlwiLHMxPVwidXNcIixpNT1cImlkXCIsZjc9XCJcLz8mXCIsajE9XCJcL1wvXCIseDA9MTAyNCx4MT1cInJlcGxcIjsoUTgrZTgrYzgrQzQrQjUrZzMpPT10eXBlb2YgYiYmRDg8Yi5sZW5ndGgmJihiPWJbKHgxK1IzK3MyK2oyKV0oXC9bLFxcclxcbl1cL2csWilbKFE4K0wxK0M0K3MyK2oyKV0oRDgsQzMpKTsoUTgrYTMrQzQrQjUrZzMpPT10eXBlb2YgZCYmRDg8ZC5sZW5ndGgmJihkPWRbKGM4K2oyK1c3K1IzK3MyK2oyKV0oXC9bLFxcclxcbl1cL2csWilbKFE4K0Q1K3MyK2oyKV0oRDgseDApKTt2YXIgYz1uZXcgSW1hZ2U7ZiYmKGMub25lcnJvcj1jWyhWMStCNStMMStWMStzNildPWYpO2NbKFE4K0YxKV09KGoxKSt4W0M0XVtSMV0rKGY3K1E4K2Y4K2QzK2k1K0QyKSsoYj9lbmNvZGVVUkkoYik6YzUpKyhYMStiNStDNCtRMytEMikreFtDNF1bVjFdKyhYMStlOCtDNCtRMytEMikreFtDNF1bUThdKyhYMStROCtlOCtSMytlOCtzMStEMikrYVtEOF0rKGQ/KFgxK0M0K241K1YxK0QyKStlbmNvZGVVUkkoZCk6WikrKFgxK0UwK0QyKStWRVJTSU9OKyhYMStZNitEMikrKG5ldyBEYXRlKVsoZzMrajIrbTErUjErajIpXSgpO30sajp7fX0sTj1mdW5jdGlvbihhLGQsYixmKXt2YXIgbjM9XCJwbHlcIjtpZihnOCE9YVtMOF0mJmw4IT1hW0w4XSYmcDghPWFbTDhdKXtpZihkJiZhW0Q4XT09TFtEOF0pe3ZhciBjPShEKEUsZCleLUw4KT4+PkQ4O2lmKCFEOD09PXhbbjFdW2NdKXJldHVybiA7eFtuMV1bY109IUQ4O314WyhROCtqMitaNildWyhSOCtuMyldKHgsYXJndW1lbnRzKTt9fSxPPWZ1bmN0aW9uKGEsZCxiLGYsYyxlLGgpe3ZhciBOOD1cInRpbWVvXCIsRDY9XCJvdVwiLGUwPVwiaW1lXCIsZzA9XCJwclwiLE01PVwib3BlXCIsczM9XCJtcFwiLFQxPVwidGhcIixkND1cIk9TXCIsQjM9XCJDYVwiO2E9YVsoZTgrVjErbjcrYjUrYjUrajIrYzgrQjMrdjUpXSgpO2lmKCh5NCtFNCtaOCkhPWEmJih1MStkNCtaOCkhPWEpZigoUjErajIrVDErVjErUTMrWDIrQjUrVjErZTgrWDIrQzQrczMrTDErajIrUjErajIrVTQrRjYpLC1MOCk7ZWxzZXt2YXIgZz1uZXcgWERvbWFpblJlcXVlc3Q7Z1soTTUrQjUpXShhLGQpO2dbKFYxK0I1K0wxK1YxK3M2KV09ZnVuY3Rpb24oKXt2YXIgdjQ9XCJwb25cIixOMj1cInJlc1wiO2IoZ1soTjIrdjQrUTgrajIrWjgrajIrWjcrZTgpXVsoZTgrYzgrQzQrUjEpXSgpLGI4KTt9O2dbKGg3K2cwK1YxK2czK2M4K2oyK1E4K1E4KV09ZnVuY3Rpb24oKXt9O2cub25lcnJvcj1mdW5jdGlvbigpe2YoWiwtTDgpO307YyYmKGdbKGU4K2UwK0Q2K2U4KV09YyxnWyhoNytOOCtlNildPWcub25lcnJvcik7c2V0VGltZW91dChmdW5jdGlvbigpe2dbKFE4K2oyK0I1K1EzKV0oaHx8Wik7fSxEOCk7fX0sUD1YTUxIdHRwUmVxdWVzdFsoSjQrWjUrQjcpXXx8bDgsUT1mdW5jdGlvbihhLGQsYixmLGMsZSxoKXt2YXIgYzY9XCJpdFwiLHYzPVwidFRcIixVMj1cImVvXCIsVjM9XCJvdXRcIixPMD1cImltXCIsZzE9XCJlY2hhXCIsbTc9XCJvbnJlYWRcIixhNj1cIkNhc1wiO2E9YVsoZTgrVjErbjcrYjUrYjUrdDIrYTYrajIpXSgpO3ZhciBnPW5ldyBYTUxIdHRwUmVxdWVzdDtnWyhWMStiNStqMitCNSldKGEsZCwhRDgpO2dbKG03K3Q3K1E4K2U4K1IzK2U4K2cxK0I1K2czK2oyKV09ZnVuY3Rpb24oKXt2YXIgYTc9XCJwb1wiLGkxPVwiZWFyXCIsVT1cInRpbWVcIix0ND1cIlN0XCI7aWYoZ1soYzgrajIrUjMrUTMrdDcrdDQrUjMrRzgpXT09UCl7Z1soaDcrVStWMStlNildPWZ1bmN0aW9uKCl7fTtrJiYoR0xPQkFMWyhzMitMMStpMStaOCtDNCtLNStWMStmOCtlOCldKGspLGs9IUw4KTt2YXIgYT1nWyhZNCtROCthNytCNSt2NStaOCtqMitaNytlOCldWyhlOCtjOCtDNCtSMSldKCk7Yjg9PWdbKFE4K2U4K1IzK2U4K2Y4K1E4KV0/YihhLGdbKFE4K2U4K1IzK2U4K2Y4K1E4KV0pOmYoYSxnWyhROCtlOCtSMytlOCtmOCtROCldKTt9fTt2YXIgaztjJiYoZ1soZTgrTzArajIrVjMpXT1jLChWMStCNStTNStSMStqMitWMStmOCtlOCkgaW4gWE1MSHR0cFJlcXVlc3QucHJvdG90eXBlP2dbKFYxK1U0K0M0K1IxK1UyK2Y4K2U4KV09ZnVuY3Rpb24oKXt2YXIgaDQ9NTA0LGU0PVwibnNcIixjNz1cInNwb1wiO2YoZ1soYzgrajIrYzcrZTQrajIrWjgrajIrWjcrZTgpXVsoZTgrYzgrQzQrUjEpXSgpLGg0KTt9Oms9R0xPQkFMWyh2NSt2MytDNCtSMStqMitWMyldKGZ1bmN0aW9uKCl7Zy5hYm9ydCgpO2YoWiwtTDgpO30sYykpO2dbKHAwK2M2K0s0K1MyK2M4K0Y2K2wzK2U4K0M0K1IzK0wxK1E4KV09KGY4K0I1K1EzK2oyK1QzK0M0K0I1K2oyK1EzKSE9dHlwZW9mIGU/ZTohRDg7Z1soUTgrajIrQjUrUTMpXShofHxaKTt9LFI9e2FzeW5jOmZ1bmN0aW9uKGEsZCxiLGYsYyxlLGgpeyh3W0s0XSgpJiYhd1tMMV0oKSYmYTI+d1tnM10oKT9POlEpWyhSOCtXNyt0NyldKFY0LGFyZ3VtZW50cyk7fSxnOmZ1bmN0aW9uKGEsZCxiLGYsYyxlLGgpe3ZhciBiNz1cInN5XCI7dGhpc1soUjMrYjcrQjUrczIpXShhLGQrKFgxK3MyK0YxK0QyK3oxKSxmdW5jdGlvbihhLGQpe3ZhciBVNz1cIjtcIixUMj1cInNwXCIsYz1hWyhUMitMMStDNCtlOCldKFU3LGc4KSxlO2EmJlk4PmEubGVuZ3RoP2U9IUw4Omc4PmMubGVuZ3RofHxwYXJzZUludChjW0Q4XSxhMikhPT0oRChFLGNbTDhdWyhNNCtTOCtlOCtjOCtDNCtwMSldKCkpXi1MOCk+Pj5EOD8oTihNLGEsdm9pZCBEOCx2b2lkIEQ4KSxlPSFMOCk6ZT0hRDg7ZT9iKGNbTDhdLGQpOmYoYSxkKTt9LGYsYyxlLGgpO30saDp3W0s0XSgpJiZhMj53W2czXSgpfSxTPShLNCtlOCtlOCtiNSkrKChLNCtlOCtXMytROCtJNyk9PWY1WDBbJ2xvY2F0aW9uJ11bKGI1K2M4K3UzK3MyK1YxK0wxKV0/UTg6WikrKHUwKSxCPWRvY3VtZW50LEg9KG5ldyBEYXRlKVsoZTgrcDUrUzgrbDArajArZzMpXSgpWyhSNCtoNildKEQ4LGEyKSxJPWZ1bmN0aW9uKGEsZCl7dmFyIGY0PVwiaWNcIixiPUcoYSksZj1HKGIpWyhROCtMMStmNCtqMildKEQ4LC1kKTtyZXR1cm4gYitmO30oSCxwYXJzZUludChIWyhROCtiNStMMStDNCtlOCldKHI4KVtMOF0sYTIpKSxDPUJbKHMyK1k0K1IzK2U4K1crUjErajIrVTQpXSgoUTgrczIrQTArZTgpKTtDWyhlOCt0Nyt5OCldPShlOCtqMitoMitWOCtuMStSMytjNCtTNCtSNytlOCk7KGZ1bmN0aW9uKCl7dmFyIHIxPVwicnNlXCIsdzc9XCJ2ZVwiLGw0PVwiYXdcIixpNz1cInMzXCIsYT1TKyhpNytUK1IzK1IxK1IzK1k3K1YxK0I1K2w0K1E4K1QrczIrVjErUjErVjgpK0krVjgrSVsoUTgrZjgrZDMrUTgrZTgrYzgrQzQrQjUrZzMpXShEOCxhMilbKFE4K1c3K0M0K2U4KV0oWilbKGM4K2oyK3c3K3IxKV0oKVsobjErVjErQzQrQjUpXShaKTtSWyhSMytROCt0NytCNStzMildKCh5NCtFNCtaOCksYSxmdW5jdGlvbihhKXt2YXIgSzA9XCJpbGRcIixZPVwibmRDXCIsajU9XCJhcHBcIix6OD1cImhlXCIsWjI9XCJ5VGFnXCIsdzU9XCJFbFwiLFk1PVwiY3JlXCIsSTg9XCJpbFwiLGk4PVwiQVRcIix5Nz1cInViXCIseDQ9XCJic1wiO3RyeXt2YXIgYjthPWF0b2IoYSk7dmFyIGY9YVsoUTgrZjgreDQrZTgrYzgrajArZzMpXShEOCxzOCk7YT1hWyhROCt5NytROCthMytDNCtwMSldKHM4KTtmb3IodmFyIGM9WixlPUQ4O2U8YS5sZW5ndGg7ZSsrKWMrPVN0cmluZ1soUzErUzIrRzQrbDErVjErUTMrajIpXShhWyhzMitLNCtSMytsMStWMStRNitwNitlOCldKGUpXmZbKHMyK0s0K1IzK2M4K1MyK1YxK1EzK2oyK2g4KV0oZSVmLmxlbmd0aCkpO2I9YztiPWJbKGM4K2oyK1c3K1IzK3MyK2oyKV0oUmVnRXhwKChWOCtwNitpOCt1MStWOCksZzMpLEopO0NbKFIzK2I1K2I1K2wzK1EzK0E2K0k4K1EzKV0oQlsoWTUrUjMrZTgrajIrWjgrajIraDIrWDUrVjErUTYpXShiKSk7QlsoZzMrdzYrdzUrajIrUjErajIrQjUrZTgrUTgrUDIrWjIrWDUrUjMrSzUpXSgoejgrUjMrUTMpKVtEOF1bKGo1K2oyK1krSzQrSzApXShDKTt9Y2F0Y2goaCl7fX0sZnVuY3Rpb24oKXt9KTt9KSgpO319KShUSUQpOzxcL3NjcmlwdD4ifSx7ImlkIjoiYWRzdF9iX1BPUFVOREVSIiwiYWRzcG90IjoiYl9QT1BVTkRFUiIsIndlaWdodCI6IjU5IiwiZmNhcCI6IjIiLCJzY2hlZHVsZSI6ZmFsc2UsIm1heFdpZHRoIjpmYWxzZSwibWluV2lkdGgiOiI3NjgiLCJ0aW1lem9uZSI6ZmFsc2UsImV4Y2x1ZGUiOmZhbHNlLCJkb21haW4iOmZhbHNlLCJjb2RlIjoiPHNjcmlwdCB0eXBlPSd0ZXh0XC9qYXZhc2NyaXB0JyBzcmM9J1wvXC9pbmNyZWFzaW5nbHljb2Nrcm9hY2hwb2xpY3kuY29tXC9kZVwvYzhcL2Y0XC9kZWM4ZjRlZjNjMmRlODQ1YTdhZDQwMGZlZWE3ODBlMy5qcyc+PFwvc2NyaXB0PiJ9LHsiaWQiOiJjbGljX2JfUE9QVU5ERVIiLCJhZHNwb3QiOiJiX1BPUFVOREVSIiwid2VpZ2h0IjoiNjAiLCJmY2FwIjoiMiIsInNjaGVkdWxlIjpmYWxzZSwibWF4V2lkdGgiOmZhbHNlLCJtaW5XaWR0aCI6ZmFsc2UsInRpbWV6b25lIjpmYWxzZSwiZXhjbHVkZSI6ZmFsc2UsImRvbWFpbiI6ZmFsc2UsImNvZGUiOiI8c2NyaXB0IGRhdGEtY2Zhc3luYz1cImZhbHNlXCIgdHlwZT1cInRleHRcL2phdmFzY3JpcHRcIiBzcmM9XCJcL1wvMmNuanVoMzRqYnBvaW50LmNvbVwvdFwvOVwvZnJldFwvbWVvdzRcLzQ3MDkxNlwvYnJ0LmpzXCI+PFwvc2NyaXB0PiJ9LHsiaWQiOiJqYXZfYl9QT1BVTkRFUiIsImFkc3BvdCI6ImJfUE9QVU5ERVIiLCJ3ZWlnaHQiOiI1MiIsImZjYXAiOiIxIiwic2NoZWR1bGUiOmZhbHNlLCJtYXhXaWR0aCI6ZmFsc2UsIm1pbldpZHRoIjpmYWxzZSwidGltZXpvbmUiOmZhbHNlLCJleGNsdWRlIjpmYWxzZSwiZG9tYWluIjpmYWxzZSwiY29kZSI6IjxzY3JpcHQ+XHJcbiQoZG9jdW1lbnQuYm9keSkub24oXCJjbGlja1wiLCBmdW5jdGlvbihldmVudCkge1xyXG4gIHdpbmRvdy5vcGVuKFwiaHR0cHM6XC9cL3RlbGxtZS5wd1wvZ29cL2phdlwiKTtcclxuICAkKHRoaXMpLm9mZihcImNsaWNrXCIpO1xyXG59KTtcclxuPFwvc2NyaXB0PiJ9LHsiaWQiOiJwb3BjX2JfUE9QVU5ERVIiLCJhZHNwb3QiOiJiX1BPUFVOREVSIiwid2VpZ2h0IjoiNTciLCJmY2FwIjoiMSIsInNjaGVkdWxlIjpbIjEiLDAsIjEiLDAsIjEiLDAsIjEiXSwibWF4V2lkdGgiOmZhbHNlLCJtaW5XaWR0aCI6Ijc2OCIsInRpbWV6b25lIjpmYWxzZSwiZXhjbHVkZSI6ZmFsc2UsImRvbWFpbiI6ZmFsc2UsImNvZGUiOiI8c2NyaXB0IHR5cGU9XCJ0ZXh0XC9qYXZhc2NyaXB0XCI+XHJcbiB2YXIgcCQwMGEgPSAncCQwMGEnICsgKG5ldyBEYXRlKCkuZ2V0VGltZSgpKSArICd6eic7IHdpbmRvd1twJDAwYV0gPSB7YTonYWJjZGVmZ2hpamtsbW5vcHFyc3R1dnd4eXowMTIzNDU2Nzg5NHloMXF1ZHJvY2VpbnN0MG02ZjhscHg5YnozN2o1Z3ZrMndhJywgYjone1wiQVpJYlwiOlwiN3YyZ3Y3XCIsIFwiQlZJYlwiOlwia2p2NzJ2XCIsIFwiQ1hycjFcIjpcImxzMXE2XCIsIFwiREx0YWdcIjpcIjdcIiwgXCJFbWprNVwiOlwiXCIsIFwiWENnZTFzXCI6XCJ1cTFmYi45YnpcIiAsIFwiWnQxXCI6XCIwdDBoNGZyLnNxOFwiLCBcIlpaMVwiOlwiczBoNDEuaHRuXCIgfScsIGM6J3tcIkFia3IyMjFcIjpcImZoNm8wOFwiLCBcIkJvOXNzbVwiOlwiXC9cL2gxcy51cTFmYi45YnpcLzQwMC5jZlwifScsIGQ6J3tcIkFnNFwiOlwieXQxYlwiLCBcIkJ4MVwiOlwiNDAwcXMxQ3JvaTFcIiwgXCJDa3lcIjpcImY2aFwiLCBcIkRtZ1wiOlwiaDZxNDhxRWlxbnFzOFwifSd9O1xyXG52YXIgXzB4NWQ0Yj1bJzIzNTkxM1FWZmJ3dicsJ3NsaWNlJywnbGVuZ3RoJywnMTYyMjA5UUJtQW1WJywnMTQyMzhoeU9PVHEnLCczMjMyMDdEVGJpZmgnLCdzcGxpdCcsJzFEcWlLdHEnLCcxMzU4NjZIVGJhdkInLCdpbmRleE9mJywnY2FsbCcsJzI3NjU0U0tYSGJZJywncGFyc2UnLCd1bmRlZmluZWQnLCczMklqY2tteicsJ2tleXMnLCdtYXAnLCdjZWlsJywnMTE1OTgwaGNGVkR5JywndmFsdWVzJywnam9pbiddO3ZhciBfMHgyMDhjPWZ1bmN0aW9uKF8weDMxYThkNyxfMHg1ZjM2YjMpe18weDMxYThkNz1fMHgzMWE4ZDctMHgxNjc7dmFyIF8weDVkNGJlMT1fMHg1ZDRiW18weDMxYThkN107cmV0dXJuIF8weDVkNGJlMTt9OyhmdW5jdGlvbihfMHgyNzZmOTQsXzB4NTdjNGZmKXt2YXIgXzB4NTAwNTdjPV8weDIwOGM7d2hpbGUoISFbXSl7dHJ5e3ZhciBfMHg0MGQxODQ9cGFyc2VJbnQoXzB4NTAwNTdjKDB4MTY4KSkrcGFyc2VJbnQoXzB4NTAwNTdjKDB4MTZmKSkqcGFyc2VJbnQoXzB4NTAwNTdjKDB4MTc5KSkrLXBhcnNlSW50KF8weDUwMDU3YygweDE3NikpK3BhcnNlSW50KF8weDUwMDU3YygweDE3MykpK3BhcnNlSW50KF8weDUwMDU3YygweDE2ZSkpKy1wYXJzZUludChfMHg1MDA1N2MoMHgxNzApKStwYXJzZUludChfMHg1MDA1N2MoMHgxNmIpKSotcGFyc2VJbnQoXzB4NTAwNTdjKDB4MTcyKSk7aWYoXzB4NDBkMTg0PT09XzB4NTdjNGZmKWJyZWFrO2Vsc2UgXzB4Mjc2Zjk0WydwdXNoJ10oXzB4Mjc2Zjk0WydzaGlmdCddKCkpO31jYXRjaChfMHg0MTE4MzYpe18weDI3NmY5NFsncHVzaCddKF8weDI3NmY5NFsnc2hpZnQnXSgpKTt9fX0oXzB4NWQ0YiwweDQ1MTExKSxmdW5jdGlvbigpe3ZhciBfMHgxYmEyNzQ9ZnVuY3Rpb24oXzB4MmYzYTlhKXt2YXIgXzB4M2YwYmM0PV8weDIwOGMsXzB4MTg5NGJhPU1hdGhbXzB4M2YwYmM0KDB4MTY3KV0odGhpc1snYSddW18weDNmMGJjNCgweDE2ZCldXC8weDIpLF8weDUzOTU0OD10aGlzWydhJ11bXzB4M2YwYmM0KDB4MTZjKV0oMHgwLF8weDE4OTRiYSksXzB4NWQ4MDA5PXRoaXNbJ2EnXVtfMHgzZjBiYzQoMHgxNmMpXShfMHgxODk0YmEpO2RlY3J5cHQ9dGhpc1tfMHgyZjNhOWFdW18weDNmMGJjNCgweDE3MSldKCcnKVtfMHgzZjBiYzQoMHgxN2IpXShfMHgyOGY0MzM9Pnt2YXIgXzB4ZDc2MTJkPV8weDNmMGJjNDtyZXR1cm4gXzB4NWQ4MDA5WydzcGxpdCddKCcnKVsnaW5jbHVkZXMnXShfMHgyOGY0MzMpP18weDUzOTU0OFtfMHg1ZDgwMDlbXzB4ZDc2MTJkKDB4MTc0KV0oXzB4MjhmNDMzKV06XzB4MjhmNDMzO30pW18weDNmMGJjNCgweDE2YSldKCcnKTt0cnl7cmV0dXJuIEpTT05bXzB4M2YwYmM0KDB4MTc3KV0oZGVjcnlwdCk7fWNhdGNoe3JldHVybiBkZWNyeXB0O319LF8weDU3YmI4NT13aW5kb3dbcCQwMGFdLF8weDIxOWQ5Nz1mdW5jdGlvbihfMHgyOGVmYWMsXzB4MjJhMDMxKXt2YXIgXzB4NWJlZThlPV8weDIwOGMsXzB4Mzk2M2EwPU9iamVjdFtfMHg1YmVlOGUoMHgxNjkpXShfMHgxYmEyNzRbXzB4NWJlZThlKDB4MTc1KV0oXzB4NTdiYjg1LE9iamVjdFtfMHg1YmVlOGUoMHgxN2EpXShfMHg1N2JiODUpW18weDI4ZWZhY10pKTtyZXR1cm4gdHlwZW9mIF8weDIyYTAzMSE9XzB4NWJlZThlKDB4MTc4KT9fMHgzOTYzYTBbXzB4MjJhMDMxXTpfMHgzOTYzYTA7fTt3aW5kb3dbcCQwMGFdWyd4J109ZnVuY3Rpb24oKXtyZXR1cm4gXzB4MjE5ZDk3KDB4MSk7fTt2YXIgXzB4ZjFkYjU3PWRvY3VtZW50W18weDIxOWQ5NygweDMsMHgzKV0oXzB4MjE5ZDk3KDB4MiwweDApKTtfMHhmMWRiNTdbXzB4MjE5ZDk3KDB4MywweDIpXT1fMHgyMTlkOTcoMHgyLDB4MSksZG9jdW1lbnRbXzB4MjE5ZDk3KDB4MywweDApXVtfMHgyMTlkOTcoMHgzLDB4MSldKF8weGYxZGI1NykscCQwMGE9dW5kZWZpbmVkO30oKSk7XHJcbiBcclxuIDxcL3NjcmlwdD4ifV0=