4 - 7 - 4.7- Parallel Computation Patterns - More on Parallel Scan.mp4
39.84MB
W3siaWQiOiJleG9jX2JfUExBWSIsImFkc3BvdCI6ImJfUExBWSIsIndlaWdodCI6IjEiLCJmY2FwIjpmYWxzZSwic2NoZWR1bGUiOmZhbHNlLCJtYXhXaWR0aCI6ZmFsc2UsIm1pbldpZHRoIjpmYWxzZSwidGltZXpvbmUiOmZhbHNlLCJleGNsdWRlIjpmYWxzZSwiZG9tYWluIjpmYWxzZSwiY29kZSI6IjwhLS1cclxuPGEgaHJlZj1cImh0dHBzOlwvXC9zeW5kaWNhdGlvbi5keW5zcnZ0YmcuY29tXC9zcGxhc2gucGhwP2lkem9uZT0xOTYxMDkyJnJldHVybl91cmw9aHR0cHM6XC9cL3RlbGxtZS5wd1wvZ29cL2J0c1wiICBjbGFzcz1cImJ0biBidG4td2FybmluZ1wiIHRhcmdldD1cIl9ibGFua1wiPjxzcGFuIGNsYXNzPVwiZ2x5cGhpY29uIGdseXBoaWNvbi1wbGF5XCI+PFwvc3Bhbj4gUGxheSBOb3c8XC9hPlxyXG4tLT4ifV0=
4 - 5 - 4.5- Parallel Computation Patterns - A Work-Inefficient Scan Kernel.mp4
38.49MB
W3siaWQiOiJleG9jX2JfUExBWSIsImFkc3BvdCI6ImJfUExBWSIsIndlaWdodCI6IjEiLCJmY2FwIjpmYWxzZSwic2NoZWR1bGUiOmZhbHNlLCJtYXhXaWR0aCI6ZmFsc2UsIm1pbldpZHRoIjpmYWxzZSwidGltZXpvbmUiOmZhbHNlLCJleGNsdWRlIjpmYWxzZSwiZG9tYWluIjpmYWxzZSwiY29kZSI6IjwhLS1cclxuPGEgaHJlZj1cImh0dHBzOlwvXC9zeW5kaWNhdGlvbi5keW5zcnZ0YmcuY29tXC9zcGxhc2gucGhwP2lkem9uZT0xOTYxMDkyJnJldHVybl91cmw9aHR0cHM6XC9cL3RlbGxtZS5wd1wvZ29cL2J0c1wiICBjbGFzcz1cImJ0biBidG4td2FybmluZ1wiIHRhcmdldD1cIl9ibGFua1wiPjxzcGFuIGNsYXNzPVwiZ2x5cGhpY29uIGdseXBoaWNvbi1wbGF5XCI+PFwvc3Bhbj4gUGxheSBOb3c8XC9hPlxyXG4tLT4ifV0=
4 - 6 - 4.6- Parallel Computation Patterns - A Work-Efficient Parallel Scan Kernel.mp4
37.88MB
W3siaWQiOiJleG9jX2JfUExBWSIsImFkc3BvdCI6ImJfUExBWSIsIndlaWdodCI6IjEiLCJmY2FwIjpmYWxzZSwic2NoZWR1bGUiOmZhbHNlLCJtYXhXaWR0aCI6ZmFsc2UsIm1pbldpZHRoIjpmYWxzZSwidGltZXpvbmUiOmZhbHNlLCJleGNsdWRlIjpmYWxzZSwiZG9tYWluIjpmYWxzZSwiY29kZSI6IjwhLS1cclxuPGEgaHJlZj1cImh0dHBzOlwvXC9zeW5kaWNhdGlvbi5keW5zcnZ0YmcuY29tXC9zcGxhc2gucGhwP2lkem9uZT0xOTYxMDkyJnJldHVybl91cmw9aHR0cHM6XC9cL3RlbGxtZS5wd1wvZ29cL2J0c1wiICBjbGFzcz1cImJ0biBidG4td2FybmluZ1wiIHRhcmdldD1cIl9ibGFua1wiPjxzcGFuIGNsYXNzPVwiZ2x5cGhpY29uIGdseXBoaWNvbi1wbGF5XCI+PFwvc3Bhbj4gUGxheSBOb3c8XC9hPlxyXG4tLT4ifV0=
2 - 6 - 2.6- Tiled Matrix Multiplication Kernel.mp4
36.16MB
W3siaWQiOiJleG9jX2JfUExBWSIsImFkc3BvdCI6ImJfUExBWSIsIndlaWdodCI6IjEiLCJmY2FwIjpmYWxzZSwic2NoZWR1bGUiOmZhbHNlLCJtYXhXaWR0aCI6ZmFsc2UsIm1pbldpZHRoIjpmYWxzZSwidGltZXpvbmUiOmZhbHNlLCJleGNsdWRlIjpmYWxzZSwiZG9tYWluIjpmYWxzZSwiY29kZSI6IjwhLS1cclxuPGEgaHJlZj1cImh0dHBzOlwvXC9zeW5kaWNhdGlvbi5keW5zcnZ0YmcuY29tXC9zcGxhc2gucGhwP2lkem9uZT0xOTYxMDkyJnJldHVybl91cmw9aHR0cHM6XC9cL3RlbGxtZS5wd1wvZ29cL2J0c1wiICBjbGFzcz1cImJ0biBidG4td2FybmluZ1wiIHRhcmdldD1cIl9ibGFua1wiPjxzcGFuIGNsYXNzPVwiZ2x5cGhpY29uIGdseXBoaWNvbi1wbGF5XCI+PFwvc3Bhbj4gUGxheSBOb3c8XC9hPlxyXG4tLT4ifV0=
3 - 6 - 3.6- Parallel Computation Patterns - Data Reuse in Tiled Convolution.mp4
31.55MB
W3siaWQiOiJleG9jX2JfUExBWSIsImFkc3BvdCI6ImJfUExBWSIsIndlaWdodCI6IjEiLCJmY2FwIjpmYWxzZSwic2NoZWR1bGUiOmZhbHNlLCJtYXhXaWR0aCI6ZmFsc2UsIm1pbldpZHRoIjpmYWxzZSwidGltZXpvbmUiOmZhbHNlLCJleGNsdWRlIjpmYWxzZSwiZG9tYWluIjpmYWxzZSwiY29kZSI6IjwhLS1cclxuPGEgaHJlZj1cImh0dHBzOlwvXC9zeW5kaWNhdGlvbi5keW5zcnZ0YmcuY29tXC9zcGxhc2gucGhwP2lkem9uZT0xOTYxMDkyJnJldHVybl91cmw9aHR0cHM6XC9cL3RlbGxtZS5wd1wvZ29cL2J0c1wiICBjbGFzcz1cImJ0biBidG4td2FybmluZ1wiIHRhcmdldD1cIl9ibGFua1wiPjxzcGFuIGNsYXNzPVwiZ2x5cGhpY29uIGdseXBoaWNvbi1wbGF5XCI+PFwvc3Bhbj4gUGxheSBOb3c8XC9hPlxyXG4tLT4ifV0=
4 - 1 - 4.1- Parallel Computation Patterns - Reduction.mp4
31.08MB
W3siaWQiOiJleG9jX2JfUExBWSIsImFkc3BvdCI6ImJfUExBWSIsIndlaWdodCI6IjEiLCJmY2FwIjpmYWxzZSwic2NoZWR1bGUiOmZhbHNlLCJtYXhXaWR0aCI6ZmFsc2UsIm1pbldpZHRoIjpmYWxzZSwidGltZXpvbmUiOmZhbHNlLCJleGNsdWRlIjpmYWxzZSwiZG9tYWluIjpmYWxzZSwiY29kZSI6IjwhLS1cclxuPGEgaHJlZj1cImh0dHBzOlwvXC9zeW5kaWNhdGlvbi5keW5zcnZ0YmcuY29tXC9zcGxhc2gucGhwP2lkem9uZT0xOTYxMDkyJnJldHVybl91cmw9aHR0cHM6XC9cL3RlbGxtZS5wd1wvZ29cL2J0c1wiICBjbGFzcz1cImJ0biBidG4td2FybmluZ1wiIHRhcmdldD1cIl9ibGFua1wiPjxzcGFuIGNsYXNzPVwiZ2x5cGhpY29uIGdseXBoaWNvbi1wbGF5XCI+PFwvc3Bhbj4gUGxheSBOb3c8XC9hPlxyXG4tLT4ifV0=
5 - 3 - 5.3- Parallel Computation Patterns - Atomic Operations in CUDA.mp4
30.7MB
W3siaWQiOiJleG9jX2JfUExBWSIsImFkc3BvdCI6ImJfUExBWSIsIndlaWdodCI6IjEiLCJmY2FwIjpmYWxzZSwic2NoZWR1bGUiOmZhbHNlLCJtYXhXaWR0aCI6ZmFsc2UsIm1pbldpZHRoIjpmYWxzZSwidGltZXpvbmUiOmZhbHNlLCJleGNsdWRlIjpmYWxzZSwiZG9tYWluIjpmYWxzZSwiY29kZSI6IjwhLS1cclxuPGEgaHJlZj1cImh0dHBzOlwvXC9zeW5kaWNhdGlvbi5keW5zcnZ0YmcuY29tXC9zcGxhc2gucGhwP2lkem9uZT0xOTYxMDkyJnJldHVybl91cmw9aHR0cHM6XC9cL3RlbGxtZS5wd1wvZ29cL2J0c1wiICBjbGFzcz1cImJ0biBidG4td2FybmluZ1wiIHRhcmdldD1cIl9ibGFua1wiPjxzcGFuIGNsYXNzPVwiZ2x5cGhpY29uIGdseXBoaWNvbi1wbGF5XCI+PFwvc3Bhbj4gUGxheSBOb3c8XC9hPlxyXG4tLT4ifV0=
3 - 1 - 3.1- Performance Considerations - DRAM Bandwidth.mp4
29.54MB
W3siaWQiOiJleG9jX2JfUExBWSIsImFkc3BvdCI6ImJfUExBWSIsIndlaWdodCI6IjEiLCJmY2FwIjpmYWxzZSwic2NoZWR1bGUiOmZhbHNlLCJtYXhXaWR0aCI6ZmFsc2UsIm1pbldpZHRoIjpmYWxzZSwidGltZXpvbmUiOmZhbHNlLCJleGNsdWRlIjpmYWxzZSwiZG9tYWluIjpmYWxzZSwiY29kZSI6IjwhLS1cclxuPGEgaHJlZj1cImh0dHBzOlwvXC9zeW5kaWNhdGlvbi5keW5zcnZ0YmcuY29tXC9zcGxhc2gucGhwP2lkem9uZT0xOTYxMDkyJnJldHVybl91cmw9aHR0cHM6XC9cL3RlbGxtZS5wd1wvZ29cL2J0c1wiICBjbGFzcz1cImJ0biBidG4td2FybmluZ1wiIHRhcmdldD1cIl9ibGFua1wiPjxzcGFuIGNsYXNzPVwiZ2x5cGhpY29uIGdseXBoaWNvbi1wbGF5XCI+PFwvc3Bhbj4gUGxheSBOb3c8XC9hPlxyXG4tLT4ifV0=
2 - 3 - 2.3- Memory Model and Locality -- CUDA Memories.mp4
28.91MB
W3siaWQiOiJleG9jX2JfUExBWSIsImFkc3BvdCI6ImJfUExBWSIsIndlaWdodCI6IjEiLCJmY2FwIjpmYWxzZSwic2NoZWR1bGUiOmZhbHNlLCJtYXhXaWR0aCI6ZmFsc2UsIm1pbldpZHRoIjpmYWxzZSwidGltZXpvbmUiOmZhbHNlLCJleGNsdWRlIjpmYWxzZSwiZG9tYWluIjpmYWxzZSwiY29kZSI6IjwhLS1cclxuPGEgaHJlZj1cImh0dHBzOlwvXC9zeW5kaWNhdGlvbi5keW5zcnZ0YmcuY29tXC9zcGxhc2gucGhwP2lkem9uZT0xOTYxMDkyJnJldHVybl91cmw9aHR0cHM6XC9cL3RlbGxtZS5wd1wvZ29cL2J0c1wiICBjbGFzcz1cImJ0biBidG4td2FybmluZ1wiIHRhcmdldD1cIl9ibGFua1wiPjxzcGFuIGNsYXNzPVwiZ2x5cGhpY29uIGdseXBoaWNvbi1wbGF5XCI+PFwvc3Bhbj4gUGxheSBOb3c8XC9hPlxyXG4tLT4ifV0=
5 - 4 - 5.4- Parallel Computation Patters - Atomic Operations Performance.mp4
27.71MB
W3siaWQiOiJleG9jX2JfUExBWSIsImFkc3BvdCI6ImJfUExBWSIsIndlaWdodCI6IjEiLCJmY2FwIjpmYWxzZSwic2NoZWR1bGUiOmZhbHNlLCJtYXhXaWR0aCI6ZmFsc2UsIm1pbldpZHRoIjpmYWxzZSwidGltZXpvbmUiOmZhbHNlLCJleGNsdWRlIjpmYWxzZSwiZG9tYWluIjpmYWxzZSwiY29kZSI6IjwhLS1cclxuPGEgaHJlZj1cImh0dHBzOlwvXC9zeW5kaWNhdGlvbi5keW5zcnZ0YmcuY29tXC9zcGxhc2gucGhwP2lkem9uZT0xOTYxMDkyJnJldHVybl91cmw9aHR0cHM6XC9cL3RlbGxtZS5wd1wvZ29cL2J0c1wiICBjbGFzcz1cImJ0biBidG4td2FybmluZ1wiIHRhcmdldD1cIl9ibGFua1wiPjxzcGFuIGNsYXNzPVwiZ2x5cGhpY29uIGdseXBoaWNvbi1wbGF5XCI+PFwvc3Bhbj4gUGxheSBOb3c8XC9hPlxyXG4tLT4ifV0=
1 - 4 - 1.4- Introduction to CUDA, Data Parallelism and Threads.mp4
27.09MB
W3siaWQiOiJleG9jX2JfUExBWSIsImFkc3BvdCI6ImJfUExBWSIsIndlaWdodCI6IjEiLCJmY2FwIjpmYWxzZSwic2NoZWR1bGUiOmZhbHNlLCJtYXhXaWR0aCI6ZmFsc2UsIm1pbldpZHRoIjpmYWxzZSwidGltZXpvbmUiOmZhbHNlLCJleGNsdWRlIjpmYWxzZSwiZG9tYWluIjpmYWxzZSwiY29kZSI6IjwhLS1cclxuPGEgaHJlZj1cImh0dHBzOlwvXC9zeW5kaWNhdGlvbi5keW5zcnZ0YmcuY29tXC9zcGxhc2gucGhwP2lkem9uZT0xOTYxMDkyJnJldHVybl91cmw9aHR0cHM6XC9cL3RlbGxtZS5wd1wvZ29cL2J0c1wiICBjbGFzcz1cImJ0biBidG4td2FybmluZ1wiIHRhcmdldD1cIl9ibGFua1wiPjxzcGFuIGNsYXNzPVwiZ2x5cGhpY29uIGdseXBoaWNvbi1wbGF5XCI+PFwvc3Bhbj4gUGxheSBOb3c8XC9hPlxyXG4tLT4ifV0=
4 - 4 - 4.4- Parallel Computation Patterns - Scan (Prefix Sum).mp4
26.97MB
W3siaWQiOiJleG9jX2JfUExBWSIsImFkc3BvdCI6ImJfUExBWSIsIndlaWdodCI6IjEiLCJmY2FwIjpmYWxzZSwic2NoZWR1bGUiOmZhbHNlLCJtYXhXaWR0aCI6ZmFsc2UsIm1pbldpZHRoIjpmYWxzZSwidGltZXpvbmUiOmZhbHNlLCJleGNsdWRlIjpmYWxzZSwiZG9tYWluIjpmYWxzZSwiY29kZSI6IjwhLS1cclxuPGEgaHJlZj1cImh0dHBzOlwvXC9zeW5kaWNhdGlvbi5keW5zcnZ0YmcuY29tXC9zcGxhc2gucGhwP2lkem9uZT0xOTYxMDkyJnJldHVybl91cmw9aHR0cHM6XC9cL3RlbGxtZS5wd1wvZ29cL2J0c1wiICBjbGFzcz1cImJ0biBidG4td2FybmluZ1wiIHRhcmdldD1cIl9ibGFua1wiPjxzcGFuIGNsYXNzPVwiZ2x5cGhpY29uIGdseXBoaWNvbi1wbGF5XCI+PFwvc3Bhbj4gUGxheSBOb3c8XC9hPlxyXG4tLT4ifV0=
2 - 5 - 2.5- Tiled Matrix Multiplication.mp4
25.8MB
W3siaWQiOiJleG9jX2JfUExBWSIsImFkc3BvdCI6ImJfUExBWSIsIndlaWdodCI6IjEiLCJmY2FwIjpmYWxzZSwic2NoZWR1bGUiOmZhbHNlLCJtYXhXaWR0aCI6ZmFsc2UsIm1pbldpZHRoIjpmYWxzZSwidGltZXpvbmUiOmZhbHNlLCJleGNsdWRlIjpmYWxzZSwiZG9tYWluIjpmYWxzZSwiY29kZSI6IjwhLS1cclxuPGEgaHJlZj1cImh0dHBzOlwvXC9zeW5kaWNhdGlvbi5keW5zcnZ0YmcuY29tXC9zcGxhc2gucGhwP2lkem9uZT0xOTYxMDkyJnJldHVybl91cmw9aHR0cHM6XC9cL3RlbGxtZS5wd1wvZ29cL2J0c1wiICBjbGFzcz1cImJ0biBidG4td2FybmluZ1wiIHRhcmdldD1cIl9ibGFua1wiPjxzcGFuIGNsYXNzPVwiZ2x5cGhpY29uIGdseXBoaWNvbi1wbGF5XCI+PFwvc3Bhbj4gUGxheSBOb3c8XC9hPlxyXG4tLT4ifV0=
1 - 1 - 1.1- Course Overview.mp4
25.74MB
W3siaWQiOiJleG9jX2JfUExBWSIsImFkc3BvdCI6ImJfUExBWSIsIndlaWdodCI6IjEiLCJmY2FwIjpmYWxzZSwic2NoZWR1bGUiOmZhbHNlLCJtYXhXaWR0aCI6ZmFsc2UsIm1pbldpZHRoIjpmYWxzZSwidGltZXpvbmUiOmZhbHNlLCJleGNsdWRlIjpmYWxzZSwiZG9tYWluIjpmYWxzZSwiY29kZSI6IjwhLS1cclxuPGEgaHJlZj1cImh0dHBzOlwvXC9zeW5kaWNhdGlvbi5keW5zcnZ0YmcuY29tXC9zcGxhc2gucGhwP2lkem9uZT0xOTYxMDkyJnJldHVybl91cmw9aHR0cHM6XC9cL3RlbGxtZS5wd1wvZ29cL2J0c1wiICBjbGFzcz1cImJ0biBidG4td2FybmluZ1wiIHRhcmdldD1cIl9ibGFua1wiPjxzcGFuIGNsYXNzPVwiZ2x5cGhpY29uIGdseXBoaWNvbi1wbGF5XCI+PFwvc3Bhbj4gUGxheSBOb3c8XC9hPlxyXG4tLT4ifV0=
2 - 1 - 2.1- Kernel-based Parallel Programming - Thread Scheduling.mp4
25.53MB
W3siaWQiOiJleG9jX2JfUExBWSIsImFkc3BvdCI6ImJfUExBWSIsIndlaWdodCI6IjEiLCJmY2FwIjpmYWxzZSwic2NoZWR1bGUiOmZhbHNlLCJtYXhXaWR0aCI6ZmFsc2UsIm1pbldpZHRoIjpmYWxzZSwidGltZXpvbmUiOmZhbHNlLCJleGNsdWRlIjpmYWxzZSwiZG9tYWluIjpmYWxzZSwiY29kZSI6IjwhLS1cclxuPGEgaHJlZj1cImh0dHBzOlwvXC9zeW5kaWNhdGlvbi5keW5zcnZ0YmcuY29tXC9zcGxhc2gucGhwP2lkem9uZT0xOTYxMDkyJnJldHVybl91cmw9aHR0cHM6XC9cL3RlbGxtZS5wd1wvZ29cL2J0c1wiICBjbGFzcz1cImJ0biBidG4td2FybmluZ1wiIHRhcmdldD1cIl9ibGFua1wiPjxzcGFuIGNsYXNzPVwiZ2x5cGhpY29uIGdseXBoaWNvbi1wbGF5XCI+PFwvc3Bhbj4gUGxheSBOb3c8XC9hPlxyXG4tLT4ifV0=
3 - 5 - 3.5- Parallel Computation Patterns - 2D Tiled Convolution Kernel.mp4
25.29MB
W3siaWQiOiJleG9jX2JfUExBWSIsImFkc3BvdCI6ImJfUExBWSIsIndlaWdodCI6IjEiLCJmY2FwIjpmYWxzZSwic2NoZWR1bGUiOmZhbHNlLCJtYXhXaWR0aCI6ZmFsc2UsIm1pbldpZHRoIjpmYWxzZSwidGltZXpvbmUiOmZhbHNlLCJleGNsdWRlIjpmYWxzZSwiZG9tYWluIjpmYWxzZSwiY29kZSI6IjwhLS1cclxuPGEgaHJlZj1cImh0dHBzOlwvXC9zeW5kaWNhdGlvbi5keW5zcnZ0YmcuY29tXC9zcGxhc2gucGhwP2lkem9uZT0xOTYxMDkyJnJldHVybl91cmw9aHR0cHM6XC9cL3RlbGxtZS5wd1wvZ29cL2J0c1wiICBjbGFzcz1cImJ0biBidG4td2FybmluZ1wiIHRhcmdldD1cIl9ibGFua1wiPjxzcGFuIGNsYXNzPVwiZ2x5cGhpY29uIGdseXBoaWNvbi1wbGF5XCI+PFwvc3Bhbj4gUGxheSBOb3c8XC9hPlxyXG4tLT4ifV0=
4 - 2 - 4.2- Parallel Computation Patterns - A Basic Reduction Kernel.mp4
25.07MB
W3siaWQiOiJleG9jX2JfUExBWSIsImFkc3BvdCI6ImJfUExBWSIsIndlaWdodCI6IjEiLCJmY2FwIjpmYWxzZSwic2NoZWR1bGUiOmZhbHNlLCJtYXhXaWR0aCI6ZmFsc2UsIm1pbldpZHRoIjpmYWxzZSwidGltZXpvbmUiOmZhbHNlLCJleGNsdWRlIjpmYWxzZSwiZG9tYWluIjpmYWxzZSwiY29kZSI6IjwhLS1cclxuPGEgaHJlZj1cImh0dHBzOlwvXC9zeW5kaWNhdGlvbi5keW5zcnZ0YmcuY29tXC9zcGxhc2gucGhwP2lkem9uZT0xOTYxMDkyJnJldHVybl91cmw9aHR0cHM6XC9cL3RlbGxtZS5wd1wvZ29cL2J0c1wiICBjbGFzcz1cImJ0biBidG4td2FybmluZ1wiIHRhcmdldD1cIl9ibGFua1wiPjxzcGFuIGNsYXNzPVwiZ2x5cGhpY29uIGdseXBoaWNvbi1wbGF5XCI+PFwvc3Bhbj4gUGxheSBOb3c8XC9hPlxyXG4tLT4ifV0=
2 - 4 - 2.4- Tiled Parallel Algorithms.mp4
25MB
W3siaWQiOiJleG9jX2JfUExBWSIsImFkc3BvdCI6ImJfUExBWSIsIndlaWdodCI6IjEiLCJmY2FwIjpmYWxzZSwic2NoZWR1bGUiOmZhbHNlLCJtYXhXaWR0aCI6ZmFsc2UsIm1pbldpZHRoIjpmYWxzZSwidGltZXpvbmUiOmZhbHNlLCJleGNsdWRlIjpmYWxzZSwiZG9tYWluIjpmYWxzZSwiY29kZSI6IjwhLS1cclxuPGEgaHJlZj1cImh0dHBzOlwvXC9zeW5kaWNhdGlvbi5keW5zcnZ0YmcuY29tXC9zcGxhc2gucGhwP2lkem9uZT0xOTYxMDkyJnJldHVybl91cmw9aHR0cHM6XC9cL3RlbGxtZS5wd1wvZ29cL2J0c1wiICBjbGFzcz1cImJ0biBidG4td2FybmluZ1wiIHRhcmdldD1cIl9ibGFua1wiPjxzcGFuIGNsYXNzPVwiZ2x5cGhpY29uIGdseXBoaWNvbi1wbGF5XCI+PFwvc3Bhbj4gUGxheSBOb3c8XC9hPlxyXG4tLT4ifV0=
3 - 4 - 3.4- Parallel Computation Patterns - Tiled Convolution.mp4
24.91MB
W3siaWQiOiJleG9jX2JfUExBWSIsImFkc3BvdCI6ImJfUExBWSIsIndlaWdodCI6IjEiLCJmY2FwIjpmYWxzZSwic2NoZWR1bGUiOmZhbHNlLCJtYXhXaWR0aCI6ZmFsc2UsIm1pbldpZHRoIjpmYWxzZSwidGltZXpvbmUiOmZhbHNlLCJleGNsdWRlIjpmYWxzZSwiZG9tYWluIjpmYWxzZSwiY29kZSI6IjwhLS1cclxuPGEgaHJlZj1cImh0dHBzOlwvXC9zeW5kaWNhdGlvbi5keW5zcnZ0YmcuY29tXC9zcGxhc2gucGhwP2lkem9uZT0xOTYxMDkyJnJldHVybl91cmw9aHR0cHM6XC9cL3RlbGxtZS5wd1wvZ29cL2J0c1wiICBjbGFzcz1cImJ0biBidG4td2FybmluZ1wiIHRhcmdldD1cIl9ibGFua1wiPjxzcGFuIGNsYXNzPVwiZ2x5cGhpY29uIGdseXBoaWNvbi1wbGF5XCI+PFwvc3Bhbj4gUGxheSBOb3c8XC9hPlxyXG4tLT4ifV0=
1 - 5 - 1.5- Introduction to CUDA, Memory Allocation and Data Movement API.mp4
24.48MB
W3siaWQiOiJleG9jX2JfUExBWSIsImFkc3BvdCI6ImJfUExBWSIsIndlaWdodCI6IjEiLCJmY2FwIjpmYWxzZSwic2NoZWR1bGUiOmZhbHNlLCJtYXhXaWR0aCI6ZmFsc2UsIm1pbldpZHRoIjpmYWxzZSwidGltZXpvbmUiOmZhbHNlLCJleGNsdWRlIjpmYWxzZSwiZG9tYWluIjpmYWxzZSwiY29kZSI6IjwhLS1cclxuPGEgaHJlZj1cImh0dHBzOlwvXC9zeW5kaWNhdGlvbi5keW5zcnZ0YmcuY29tXC9zcGxhc2gucGhwP2lkem9uZT0xOTYxMDkyJnJldHVybl91cmw9aHR0cHM6XC9cL3RlbGxtZS5wd1wvZ29cL2J0c1wiICBjbGFzcz1cImJ0biBidG4td2FybmluZ1wiIHRhcmdldD1cIl9ibGFua1wiPjxzcGFuIGNsYXNzPVwiZ2x5cGhpY29uIGdseXBoaWNvbi1wbGF5XCI+PFwvc3Bhbj4gUGxheSBOb3c8XC9hPlxyXG4tLT4ifV0=
1 - 6 - 1.6- Introduction to CUDA, Kernel-Based SPMD Parallel Programming.mp4
24.23MB
W3siaWQiOiJleG9jX2JfUExBWSIsImFkc3BvdCI6ImJfUExBWSIsIndlaWdodCI6IjEiLCJmY2FwIjpmYWxzZSwic2NoZWR1bGUiOmZhbHNlLCJtYXhXaWR0aCI6ZmFsc2UsIm1pbldpZHRoIjpmYWxzZSwidGltZXpvbmUiOmZhbHNlLCJleGNsdWRlIjpmYWxzZSwiZG9tYWluIjpmYWxzZSwiY29kZSI6IjwhLS1cclxuPGEgaHJlZj1cImh0dHBzOlwvXC9zeW5kaWNhdGlvbi5keW5zcnZ0YmcuY29tXC9zcGxhc2gucGhwP2lkem9uZT0xOTYxMDkyJnJldHVybl91cmw9aHR0cHM6XC9cL3RlbGxtZS5wd1wvZ29cL2J0c1wiICBjbGFzcz1cImJ0biBidG4td2FybmluZ1wiIHRhcmdldD1cIl9ibGFua1wiPjxzcGFuIGNsYXNzPVwiZ2x5cGhpY29uIGdseXBoaWNvbi1wbGF5XCI+PFwvc3Bhbj4gUGxheSBOb3c8XC9hPlxyXG4tLT4ifV0=
5 - 5 - 5.5- Parallel Computation Patterns - A Privatized Histogram Kernel.mp4
23.27MB
W3siaWQiOiJleG9jX2JfUExBWSIsImFkc3BvdCI6ImJfUExBWSIsIndlaWdodCI6IjEiLCJmY2FwIjpmYWxzZSwic2NoZWR1bGUiOmZhbHNlLCJtYXhXaWR0aCI6ZmFsc2UsIm1pbldpZHRoIjpmYWxzZSwidGltZXpvbmUiOmZhbHNlLCJleGNsdWRlIjpmYWxzZSwiZG9tYWluIjpmYWxzZSwiY29kZSI6IjwhLS1cclxuPGEgaHJlZj1cImh0dHBzOlwvXC9zeW5kaWNhdGlvbi5keW5zcnZ0YmcuY29tXC9zcGxhc2gucGhwP2lkem9uZT0xOTYxMDkyJnJldHVybl91cmw9aHR0cHM6XC9cL3RlbGxtZS5wd1wvZ29cL2J0c1wiICBjbGFzcz1cImJ0biBidG4td2FybmluZ1wiIHRhcmdldD1cIl9ibGFua1wiPjxzcGFuIGNsYXNzPVwiZ2x5cGhpY29uIGdseXBoaWNvbi1wbGF5XCI+PFwvc3Bhbj4gUGxheSBOb3c8XC9hPlxyXG4tLT4ifV0=
3 - 2 - 3.2- Performance Considerations - Memory Coalescing in CUDA.mp4
22.72MB
W3siaWQiOiJleG9jX2JfUExBWSIsImFkc3BvdCI6ImJfUExBWSIsIndlaWdodCI6IjEiLCJmY2FwIjpmYWxzZSwic2NoZWR1bGUiOmZhbHNlLCJtYXhXaWR0aCI6ZmFsc2UsIm1pbldpZHRoIjpmYWxzZSwidGltZXpvbmUiOmZhbHNlLCJleGNsdWRlIjpmYWxzZSwiZG9tYWluIjpmYWxzZSwiY29kZSI6IjwhLS1cclxuPGEgaHJlZj1cImh0dHBzOlwvXC9zeW5kaWNhdGlvbi5keW5zcnZ0YmcuY29tXC9zcGxhc2gucGhwP2lkem9uZT0xOTYxMDkyJnJldHVybl91cmw9aHR0cHM6XC9cL3RlbGxtZS5wd1wvZ29cL2J0c1wiICBjbGFzcz1cImJ0biBidG4td2FybmluZ1wiIHRhcmdldD1cIl9ibGFua1wiPjxzcGFuIGNsYXNzPVwiZ2x5cGhpY29uIGdseXBoaWNvbi1wbGF5XCI+PFwvc3Bhbj4gUGxheSBOb3c8XC9hPlxyXG4tLT4ifV0=
5 - 1 - 5.1- Parallel Computation Patterns - Histogramming.mp4
22.23MB
W3siaWQiOiJleG9jX2JfUExBWSIsImFkc3BvdCI6ImJfUExBWSIsIndlaWdodCI6IjEiLCJmY2FwIjpmYWxzZSwic2NoZWR1bGUiOmZhbHNlLCJtYXhXaWR0aCI6ZmFsc2UsIm1pbldpZHRoIjpmYWxzZSwidGltZXpvbmUiOmZhbHNlLCJleGNsdWRlIjpmYWxzZSwiZG9tYWluIjpmYWxzZSwiY29kZSI6IjwhLS1cclxuPGEgaHJlZj1cImh0dHBzOlwvXC9zeW5kaWNhdGlvbi5keW5zcnZ0YmcuY29tXC9zcGxhc2gucGhwP2lkem9uZT0xOTYxMDkyJnJldHVybl91cmw9aHR0cHM6XC9cL3RlbGxtZS5wd1wvZ29cL2J0c1wiICBjbGFzcz1cImJ0biBidG4td2FybmluZ1wiIHRhcmdldD1cIl9ibGFua1wiPjxzcGFuIGNsYXNzPVwiZ2x5cGhpY29uIGdseXBoaWNvbi1wbGF5XCI+PFwvc3Bhbj4gUGxheSBOb3c8XC9hPlxyXG4tLT4ifV0=
5 - 2 - 5.2- Parallel Computation Patterns - Atomic Operations.mp4
22.12MB
W3siaWQiOiJleG9jX2JfUExBWSIsImFkc3BvdCI6ImJfUExBWSIsIndlaWdodCI6IjEiLCJmY2FwIjpmYWxzZSwic2NoZWR1bGUiOmZhbHNlLCJtYXhXaWR0aCI6ZmFsc2UsIm1pbldpZHRoIjpmYWxzZSwidGltZXpvbmUiOmZhbHNlLCJleGNsdWRlIjpmYWxzZSwiZG9tYWluIjpmYWxzZSwiY29kZSI6IjwhLS1cclxuPGEgaHJlZj1cImh0dHBzOlwvXC9zeW5kaWNhdGlvbi5keW5zcnZ0YmcuY29tXC9zcGxhc2gucGhwP2lkem9uZT0xOTYxMDkyJnJldHVybl91cmw9aHR0cHM6XC9cL3RlbGxtZS5wd1wvZ29cL2J0c1wiICBjbGFzcz1cImJ0biBidG4td2FybmluZ1wiIHRhcmdldD1cIl9ibGFua1wiPjxzcGFuIGNsYXNzPVwiZ2x5cGhpY29uIGdseXBoaWNvbi1wbGF5XCI+PFwvc3Bhbj4gUGxheSBOb3c8XC9hPlxyXG4tLT4ifV0=
1 - 8 - 1.8- Kernel-based Parallel Programming, Basic Matrix-Matrix Multiplication.mp4
21.74MB
W3siaWQiOiJleG9jX2JfUExBWSIsImFkc3BvdCI6ImJfUExBWSIsIndlaWdodCI6IjEiLCJmY2FwIjpmYWxzZSwic2NoZWR1bGUiOmZhbHNlLCJtYXhXaWR0aCI6ZmFsc2UsIm1pbldpZHRoIjpmYWxzZSwidGltZXpvbmUiOmZhbHNlLCJleGNsdWRlIjpmYWxzZSwiZG9tYWluIjpmYWxzZSwiY29kZSI6IjwhLS1cclxuPGEgaHJlZj1cImh0dHBzOlwvXC9zeW5kaWNhdGlvbi5keW5zcnZ0YmcuY29tXC9zcGxhc2gucGhwP2lkem9uZT0xOTYxMDkyJnJldHVybl91cmw9aHR0cHM6XC9cL3RlbGxtZS5wd1wvZ29cL2J0c1wiICBjbGFzcz1cImJ0biBidG4td2FybmluZ1wiIHRhcmdldD1cIl9ibGFua1wiPjxzcGFuIGNsYXNzPVwiZ2x5cGhpY29uIGdseXBoaWNvbi1wbGF5XCI+PFwvc3Bhbj4gUGxheSBOb3c8XC9hPlxyXG4tLT4ifV0=
1 - 7 - 1.7- Kernel-based Parallel Programming, Multidimensional Kernel Configuration.mp4
21.69MB
W3siaWQiOiJleG9jX2JfUExBWSIsImFkc3BvdCI6ImJfUExBWSIsIndlaWdodCI6IjEiLCJmY2FwIjpmYWxzZSwic2NoZWR1bGUiOmZhbHNlLCJtYXhXaWR0aCI6ZmFsc2UsIm1pbldpZHRoIjpmYWxzZSwidGltZXpvbmUiOmZhbHNlLCJleGNsdWRlIjpmYWxzZSwiZG9tYWluIjpmYWxzZSwiY29kZSI6IjwhLS1cclxuPGEgaHJlZj1cImh0dHBzOlwvXC9zeW5kaWNhdGlvbi5keW5zcnZ0YmcuY29tXC9zcGxhc2gucGhwP2lkem9uZT0xOTYxMDkyJnJldHVybl91cmw9aHR0cHM6XC9cL3RlbGxtZS5wd1wvZ29cL2J0c1wiICBjbGFzcz1cImJ0biBidG4td2FybmluZ1wiIHRhcmdldD1cIl9ibGFua1wiPjxzcGFuIGNsYXNzPVwiZ2x5cGhpY29uIGdseXBoaWNvbi1wbGF5XCI+PFwvc3Bhbj4gUGxheSBOb3c8XC9hPlxyXG4tLT4ifV0=
2 - 8 - 2.8- A Tiled Kernel for Arbitrary Matrix Dimensions.mp4
21.44MB
W3siaWQiOiJleG9jX2JfUExBWSIsImFkc3BvdCI6ImJfUExBWSIsIndlaWdodCI6IjEiLCJmY2FwIjpmYWxzZSwic2NoZWR1bGUiOmZhbHNlLCJtYXhXaWR0aCI6ZmFsc2UsIm1pbldpZHRoIjpmYWxzZSwidGltZXpvbmUiOmZhbHNlLCJleGNsdWRlIjpmYWxzZSwiZG9tYWluIjpmYWxzZSwiY29kZSI6IjwhLS1cclxuPGEgaHJlZj1cImh0dHBzOlwvXC9zeW5kaWNhdGlvbi5keW5zcnZ0YmcuY29tXC9zcGxhc2gucGhwP2lkem9uZT0xOTYxMDkyJnJldHVybl91cmw9aHR0cHM6XC9cL3RlbGxtZS5wd1wvZ29cL2J0c1wiICBjbGFzcz1cImJ0biBidG4td2FybmluZ1wiIHRhcmdldD1cIl9ibGFua1wiPjxzcGFuIGNsYXNzPVwiZ2x5cGhpY29uIGdseXBoaWNvbi1wbGF5XCI+PFwvc3Bhbj4gUGxheSBOb3c8XC9hPlxyXG4tLT4ifV0=
Рекомендуемая литература David B. Kirk, Wen-mei W. Hwu Programming Massively Parallel Processors, Second Edition.pdf
21.4MB
3 - 3 - 3.3- Parallel Computation Patterns - Convolution.mp4
21.08MB
W3siaWQiOiJleG9jX2JfUExBWSIsImFkc3BvdCI6ImJfUExBWSIsIndlaWdodCI6IjEiLCJmY2FwIjpmYWxzZSwic2NoZWR1bGUiOmZhbHNlLCJtYXhXaWR0aCI6ZmFsc2UsIm1pbldpZHRoIjpmYWxzZSwidGltZXpvbmUiOmZhbHNlLCJleGNsdWRlIjpmYWxzZSwiZG9tYWluIjpmYWxzZSwiY29kZSI6IjwhLS1cclxuPGEgaHJlZj1cImh0dHBzOlwvXC9zeW5kaWNhdGlvbi5keW5zcnZ0YmcuY29tXC9zcGxhc2gucGhwP2lkem9uZT0xOTYxMDkyJnJldHVybl91cmw9aHR0cHM6XC9cL3RlbGxtZS5wd1wvZ29cL2J0c1wiICBjbGFzcz1cImJ0biBidG4td2FybmluZ1wiIHRhcmdldD1cIl9ibGFua1wiPjxzcGFuIGNsYXNzPVwiZ2x5cGhpY29uIGdseXBoaWNvbi1wbGF5XCI+PFwvc3Bhbj4gUGxheSBOb3c8XC9hPlxyXG4tLT4ifV0=
4 - 3 - 4.3- Parallel Computation Patterns - A Better Reduction Kernel.mp4
19.99MB
W3siaWQiOiJleG9jX2JfUExBWSIsImFkc3BvdCI6ImJfUExBWSIsIndlaWdodCI6IjEiLCJmY2FwIjpmYWxzZSwic2NoZWR1bGUiOmZhbHNlLCJtYXhXaWR0aCI6ZmFsc2UsIm1pbldpZHRoIjpmYWxzZSwidGltZXpvbmUiOmZhbHNlLCJleGNsdWRlIjpmYWxzZSwiZG9tYWluIjpmYWxzZSwiY29kZSI6IjwhLS1cclxuPGEgaHJlZj1cImh0dHBzOlwvXC9zeW5kaWNhdGlvbi5keW5zcnZ0YmcuY29tXC9zcGxhc2gucGhwP2lkem9uZT0xOTYxMDkyJnJldHVybl91cmw9aHR0cHM6XC9cL3RlbGxtZS5wd1wvZ29cL2J0c1wiICBjbGFzcz1cImJ0biBidG4td2FybmluZ1wiIHRhcmdldD1cIl9ibGFua1wiPjxzcGFuIGNsYXNzPVwiZ2x5cGhpY29uIGdseXBoaWNvbi1wbGF5XCI+PFwvc3Bhbj4gUGxheSBOb3c8XC9hPlxyXG4tLT4ifV0=
2 - 2 - 2.2- Control Divergence.mp4
19.83MB
W3siaWQiOiJleG9jX2JfUExBWSIsImFkc3BvdCI6ImJfUExBWSIsIndlaWdodCI6IjEiLCJmY2FwIjpmYWxzZSwic2NoZWR1bGUiOmZhbHNlLCJtYXhXaWR0aCI6ZmFsc2UsIm1pbldpZHRoIjpmYWxzZSwidGltZXpvbmUiOmZhbHNlLCJleGNsdWRlIjpmYWxzZSwiZG9tYWluIjpmYWxzZSwiY29kZSI6IjwhLS1cclxuPGEgaHJlZj1cImh0dHBzOlwvXC9zeW5kaWNhdGlvbi5keW5zcnZ0YmcuY29tXC9zcGxhc2gucGhwP2lkem9uZT0xOTYxMDkyJnJldHVybl91cmw9aHR0cHM6XC9cL3RlbGxtZS5wd1wvZ29cL2J0c1wiICBjbGFzcz1cImJ0biBidG4td2FybmluZ1wiIHRhcmdldD1cIl9ibGFua1wiPjxzcGFuIGNsYXNzPVwiZ2x5cGhpY29uIGdseXBoaWNvbi1wbGF5XCI+PFwvc3Bhbj4gUGxheSBOb3c8XC9hPlxyXG4tLT4ifV0=
2 - 7 - 2.7- Handling Boundary Conditions in Tiling.mp4
17.92MB
W3siaWQiOiJleG9jX2JfUExBWSIsImFkc3BvdCI6ImJfUExBWSIsIndlaWdodCI6IjEiLCJmY2FwIjpmYWxzZSwic2NoZWR1bGUiOmZhbHNlLCJtYXhXaWR0aCI6ZmFsc2UsIm1pbldpZHRoIjpmYWxzZSwidGltZXpvbmUiOmZhbHNlLCJleGNsdWRlIjpmYWxzZSwiZG9tYWluIjpmYWxzZSwiY29kZSI6IjwhLS1cclxuPGEgaHJlZj1cImh0dHBzOlwvXC9zeW5kaWNhdGlvbi5keW5zcnZ0YmcuY29tXC9zcGxhc2gucGhwP2lkem9uZT0xOTYxMDkyJnJldHVybl91cmw9aHR0cHM6XC9cL3RlbGxtZS5wd1wvZ29cL2J0c1wiICBjbGFzcz1cImJ0biBidG4td2FybmluZ1wiIHRhcmdldD1cIl9ibGFua1wiPjxzcGFuIGNsYXNzPVwiZ2x5cGhpY29uIGdseXBoaWNvbi1wbGF5XCI+PFwvc3Bhbj4gUGxheSBOb3c8XC9hPlxyXG4tLT4ifV0=
1 - 2 - 1.2- Introduction to Heterogeneous Parallel Computing.mp4
17.75MB
W3siaWQiOiJleG9jX2JfUExBWSIsImFkc3BvdCI6ImJfUExBWSIsIndlaWdodCI6IjEiLCJmY2FwIjpmYWxzZSwic2NoZWR1bGUiOmZhbHNlLCJtYXhXaWR0aCI6ZmFsc2UsIm1pbldpZHRoIjpmYWxzZSwidGltZXpvbmUiOmZhbHNlLCJleGNsdWRlIjpmYWxzZSwiZG9tYWluIjpmYWxzZSwiY29kZSI6IjwhLS1cclxuPGEgaHJlZj1cImh0dHBzOlwvXC9zeW5kaWNhdGlvbi5keW5zcnZ0YmcuY29tXC9zcGxhc2gucGhwP2lkem9uZT0xOTYxMDkyJnJldHVybl91cmw9aHR0cHM6XC9cL3RlbGxtZS5wd1wvZ29cL2J0c1wiICBjbGFzcz1cImJ0biBidG4td2FybmluZ1wiIHRhcmdldD1cIl9ibGFua1wiPjxzcGFuIGNsYXNzPVwiZ2x5cGhpY29uIGdseXBoaWNvbi1wbGF5XCI+PFwvc3Bhbj4gUGxheSBOb3c8XC9hPlxyXG4tLT4ifV0=
1 - 3 - 1.3- Portability and Scalability in Heterogeneous Parallel Computing.mp4
9.59MB
W3siaWQiOiJleG9jX2JfUExBWSIsImFkc3BvdCI6ImJfUExBWSIsIndlaWdodCI6IjEiLCJmY2FwIjpmYWxzZSwic2NoZWR1bGUiOmZhbHNlLCJtYXhXaWR0aCI6ZmFsc2UsIm1pbldpZHRoIjpmYWxzZSwidGltZXpvbmUiOmZhbHNlLCJleGNsdWRlIjpmYWxzZSwiZG9tYWluIjpmYWxzZSwiY29kZSI6IjwhLS1cclxuPGEgaHJlZj1cImh0dHBzOlwvXC9zeW5kaWNhdGlvbi5keW5zcnZ0YmcuY29tXC9zcGxhc2gucGhwP2lkem9uZT0xOTYxMDkyJnJldHVybl91cmw9aHR0cHM6XC9cL3RlbGxtZS5wd1wvZ29cL2J0c1wiICBjbGFzcz1cImJ0biBidG4td2FybmluZ1wiIHRhcmdldD1cIl9ibGFua1wiPjxzcGFuIGNsYXNzPVwiZ2x5cGhpY29uIGdseXBoaWNvbi1wbGF5XCI+PFwvc3Bhbj4gUGxheSBOb3c8XC9hPlxyXG4tLT4ifV0=
hetero-lecture_slides_002-Lecture 1-Lecture-1-5-cuda-API.pdf
892.83KB
Lecture-5-3-CUDA-atomic.pdf
769.75KB
hetero-lecture_slides_002-Lecture 1-Lecture-1-4-cuda-intro.pdf
593.42KB
Lecture-4-7-more-on-scan.pdf
579.67KB
Lecture-5-5-privatized-histogram.pdf
541.1KB
Lecture-4-4-scan.pdf
526.45KB
Lecture-3-2-memory-coalescing.pdf
512.64KB
Lecture-3-6-convolution-reuse.pdf
506.08KB
Lecture-5-1-histogram.pdf
501.85KB
Lecture-3-3-convolution.pdf
499.79KB
Lecture-3-1-dram-bandwidth.pdf
498.21KB
Lecture-4-6-work-efficient-scan-kernel.pdf
491.81KB
hetero-lecture_slides_002-Lecture 1-Lecture-1-6-cuda-kernel.pdf
490.97KB
Lecture-3-5-2D-convolution-kernel.pdf
477.01KB
Lecture-3-4-tiled-convolution.pdf
452.39KB
Lecture-5-4-atomic-performance.pdf
443.93KB
hetero-lecture_slides_002-Lecture 2-Lecture-2-2-control-divergence.pdf
442.19KB
Lecture-5-2-atomic-operations.pdf
437.04KB
hetero-lecture_slides_002-Lecture 2-Lecture-2-1-transparent-scaling.pdf
430.32KB
Lecture-4-3-better-reduction-kernel.pdf
413.95KB
Lecture-4-2-reduction-kernel.pdf
363.37KB
hetero-lecture_slides_002-Lecture 1-Lecture-1-7-kernel-multidimension.pdf
343.33KB
Lecture-4-5-naive-scan-kernel.pdf
338.76KB
Lecture-4-1-reduction.pdf
294.27KB
hetero-lecture_slides_002-Lecture 2-Lecture-2-3-cuda-memories.pdf
294.14KB
hetero-lecture_slides_002-Lecture 1-Lecture-1-3-software-cost.pdf
279.64KB
hetero-lecture_slides_002-Lecture 1-Lecture-1-2-heterogeneous.pdf
272.22KB
hetero-lecture_slides_002-Lecture 1-Lecture-1-8-kernel-matrix-multiplication.pdf
269.67KB
hetero-lecture_slides_002-Lecture 1-Lecture-1-1-Overview.pdf
242.54KB
hetero-lecture_slides_002-Lecture 2-Lecture-2-8-boundary-condition-kernel.pdf
233.41KB
hetero-lecture_slides_002-Lecture 2-Lecture-2-6-tiled-kernel.pdf
231.2KB
hetero-lecture_slides_002-Lecture 2-Lecture-2-4-tiled-algorithms.pdf
222.14KB
hetero-lecture_slides_002-Lecture 2-Lecture-2-7-boundary-condition.pdf
175.9KB
hetero-lecture_slides_002-Lecture 2-Lecture-2-5-tiled-matrix-multiplication.pdf
162.42KB
2 - 6 - 2.6- Tiled Matrix Multiplication Kernel.srt
32.79KB
4 - 1 - 4.1- Parallel Computation Patterns - Reduction.srt
28.48KB
3 - 1 - 3.1- Performance Considerations - DRAM Bandwidth.srt
28.18KB
Гетерогенное параллельное программирование.docx
27.63KB
3 - 6 - 3.6- Parallel Computation Patterns - Data Reuse in Tiled Convolution.srt
27.23KB
1 - 4 - 1.4- Introduction to CUDA, Data Parallelism and Threads.srt
26.47KB
2 - 3 - 2.3- Memory Model and Locality -- CUDA Memories.srt
26.32KB
4 - 5 - 4.5- Parallel Computation Patterns - A Work-Inefficient Scan Kernel.srt
26.26KB
1 - 1 - 1.1- Course Overview.srt
25.83KB
4 - 7 - 4.7- Parallel Computation Patterns - More on Parallel Scan.srt
25.04KB
2 - 5 - 2.5- Tiled Matrix Multiplication.srt
25.03KB
4 - 6 - 4.6- Parallel Computation Patterns - A Work-Efficient Parallel Scan Kernel.srt
24.5KB
4 - 4 - 4.4- Parallel Computation Patterns - Scan (Prefix Sum).srt
24.08KB
1 - 6 - 1.6- Introduction to CUDA, Kernel-Based SPMD Parallel Programming.srt
23.58KB
2 - 4 - 2.4- Tiled Parallel Algorithms.srt
23.06KB
1 - 5 - 1.5- Introduction to CUDA, Memory Allocation and Data Movement API.srt
22.78KB
3 - 5 - 3.5- Parallel Computation Patterns - 2D Tiled Convolution Kernel.srt
22.77KB
2 - 1 - 2.1- Kernel-based Parallel Programming - Thread Scheduling.srt
22.68KB
4 - 2 - 4.2- Parallel Computation Patterns - A Basic Reduction Kernel.srt
21.87KB
5 - 3 - 5.3- Parallel Computation Patterns - Atomic Operations in CUDA.srt
21.54KB
3 - 4 - 3.4- Parallel Computation Patterns - Tiled Convolution.srt
21.07KB
2 - 8 - 2.8- A Tiled Kernel for Arbitrary Matrix Dimensions.srt
20.43KB
1 - 8 - 1.8- Kernel-based Parallel Programming, Basic Matrix-Matrix Multiplication.srt
20.23KB
2 - 6 - 2.6- Tiled Matrix Multiplication Kernel.txt
20.22KB
5 - 4 - 5.4- Parallel Computation Patters - Atomic Operations Performance.srt
19.55KB
1 - 2 - 1.2- Introduction to Heterogeneous Parallel Computing.srt
19.44KB
1 - 7 - 1.7- Kernel-based Parallel Programming, Multidimensional Kernel Configuration.srt
19.05KB
4 - 3 - 4.3- Parallel Computation Patterns - A Better Reduction Kernel.srt
18.7KB
3 - 3 - 3.3- Parallel Computation Patterns - Convolution.srt
18.67KB
3 - 2 - 3.2- Performance Considerations - Memory Coalescing in CUDA.srt
18.42KB
2 - 2 - 2.2- Control Divergence.srt
18.11KB
4 - 1 - 4.1- Parallel Computation Patterns - Reduction.txt
17.51KB
3 - 1 - 3.1- Performance Considerations - DRAM Bandwidth.txt
17.11KB
5 - 5 - 5.5- Parallel Computation Patterns - A Privatized Histogram Kernel.srt
16.84KB
3 - 6 - 3.6- Parallel Computation Patterns - Data Reuse in Tiled Convolution.txt
16.75KB
2 - 7 - 2.7- Handling Boundary Conditions in Tiling.srt
16.54KB
2 - 3 - 2.3- Memory Model and Locality -- CUDA Memories.txt
16.21KB
4 - 5 - 4.5- Parallel Computation Patterns - A Work-Inefficient Scan Kernel.txt
16.08KB
1 - 4 - 1.4- Introduction to CUDA, Data Parallelism and Threads.txt
16.05KB
1 - 1 - 1.1- Course Overview.txt
15.82KB
2 - 5 - 2.5- Tiled Matrix Multiplication.txt
15.36KB
5 - 1 - 5.1- Parallel Computation Patterns - Histogramming.srt
15.35KB
4 - 7 - 4.7- Parallel Computation Patterns - More on Parallel Scan.txt
15.33KB
5 - 2 - 5.2- Parallel Computation Patterns - Atomic Operations.srt
15.33KB
4 - 6 - 4.6- Parallel Computation Patterns - A Work-Efficient Parallel Scan Kernel.txt
15.24KB
4 - 4 - 4.4- Parallel Computation Patterns - Scan (Prefix Sum).txt
14.68KB
1 - 6 - 1.6- Introduction to CUDA, Kernel-Based SPMD Parallel Programming.txt
14.42KB
2 - 4 - 2.4- Tiled Parallel Algorithms.txt
14.24KB
1 - 5 - 1.5- Introduction to CUDA, Memory Allocation and Data Movement API.txt
14.17KB
3 - 5 - 3.5- Parallel Computation Patterns - 2D Tiled Convolution Kernel.txt
13.96KB
2 - 1 - 2.1- Kernel-based Parallel Programming - Thread Scheduling.txt
13.9KB
4 - 2 - 4.2- Parallel Computation Patterns - A Basic Reduction Kernel.txt
13.26KB
3 - 4 - 3.4- Parallel Computation Patterns - Tiled Convolution.txt
13.14KB
5 - 3 - 5.3- Parallel Computation Patterns - Atomic Operations in CUDA.txt
13.04KB
1 - 8 - 1.8- Kernel-based Parallel Programming, Basic Matrix-Matrix Multiplication.txt
12.54KB
2 - 8 - 2.8- A Tiled Kernel for Arbitrary Matrix Dimensions.txt
12.54KB
1 - 2 - 1.2- Introduction to Heterogeneous Parallel Computing.txt
12.17KB
5 - 4 - 5.4- Parallel Computation Patters - Atomic Operations Performance.txt
12.07KB
1 - 7 - 1.7- Kernel-based Parallel Programming, Multidimensional Kernel Configuration.txt
11.67KB
4 - 3 - 4.3- Parallel Computation Patterns - A Better Reduction Kernel.txt
11.52KB
3 - 3 - 3.3- Parallel Computation Patterns - Convolution.txt
11.43KB
3 - 2 - 3.2- Performance Considerations - Memory Coalescing in CUDA.txt
11.42KB
2 - 2 - 2.2- Control Divergence.txt
11.25KB
1 - 3 - 1.3- Portability and Scalability in Heterogeneous Parallel Computing.srt
10.85KB
5 - 5 - 5.5- Parallel Computation Patterns - A Privatized Histogram Kernel.txt
10.35KB
2 - 7 - 2.7- Handling Boundary Conditions in Tiling.txt
10.19KB
5 - 1 - 5.1- Parallel Computation Patterns - Histogramming.txt
9.37KB
5 - 2 - 5.2- Parallel Computation Patterns - Atomic Operations.txt
9.35KB
1 - 3 - 1.3- Portability and Scalability in Heterogeneous Parallel Computing.txt
6.69KB